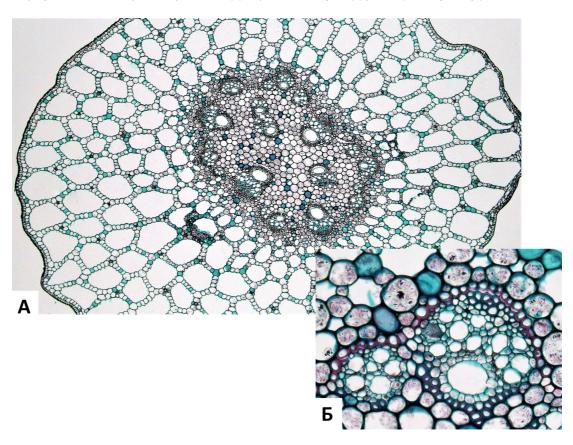
Биология-11


Шифр 42445351 **Предмет** Биология

Класс 11

ID профиля 957071

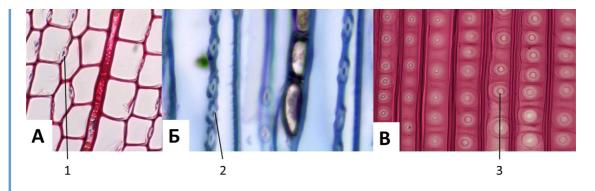
Задание ID2 (Задача № 1281310)

На рисунке показан поперечный срез стебля (A) и проводящего пучка (Б) рдеста (Potamogeton sp.).

Основываясь на анатомических особенностях растения, укажите для каждого из следующих утверждений, является оно верным или неверным:

Ответ ученика

- 🗙 Аэренхима состоит из клеток с крупными выростами
- ✓ В аэренхиме располагаются клетки механической ткани астросклереиды
- ✔ Проводящие пучки концентрические амфивазальные
- 🗶 В проводящих пучках редуцирована флоэма
- ✓ Данное растение гидрофит
- ✓ Для растения характерна атактостела


Время ответа: 19.03.2022 10:05:06

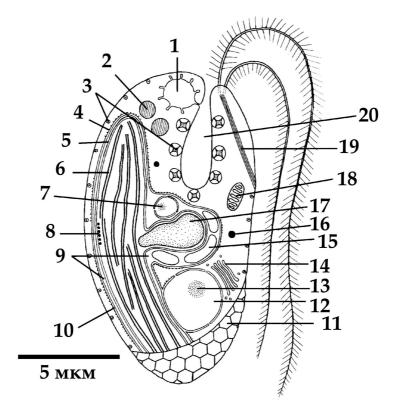
Баллы: 2 из 3

Задание ID3 (Задача № 1281313)

На фотографиях представлены участки срезов проводящей ткани высшего растения (Embryophyta).

Для каждого из следующих утверждений укажите, является оно верным или неверным:

Ответ ученика


- 🗶 На фотографиях показаны трахеиды, проводящая ткань флоэма
- 🗸 Через структуры, обозначенные цифрами 1-2, соединяются протопласты соседних клеток
- ✓ Цифрой 3 обозначена простая перфорационная пластинка
- Раствор по проводящим элементам, показанным на фотографиях, может передвигаться как от корней к листьям, так и в обратном направлении
- ✓ Цифрами 1-2 обозначены плазмодесмы
- У цветковых растений (Magnoliophyta) НЕ встречаются проводящие элементы подобные тем, что показаны на
- рисунке

Время ответа: 19.03.2022 10:09:08

Баллы: **1** из 3

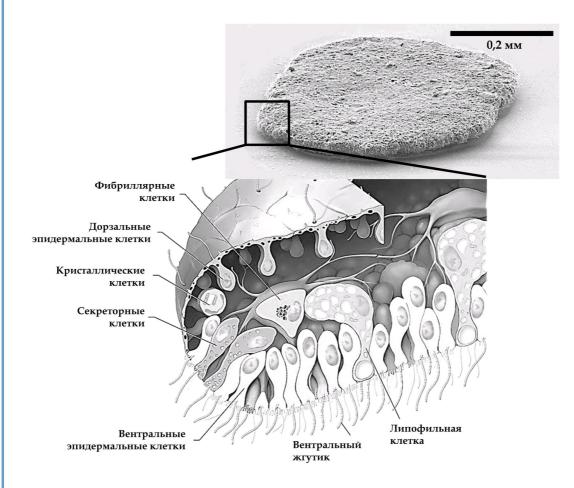
Задание ID7 (Задача № 1281343)

Перед вами схема строения клетки некого эукариотического организма.

Для каждого из следующих утверждений о данном организме укажите, является оно верным или неверным:

Ответ ученика

- 🗸 Органелла под цифрой 17 содержит запас питательного вещества
- 🗸 Данный организм имеет мастигонемы на обоих жгутиках
- ✔ Данный организм принадлежит к супергруппе Discoba (ранее в составе Excavata)


- 🔔 Хлоропласт данного организма окружён четыремя мембранами, включая мембрану хлоропластно-
- эндоплазматической сети
- 🗶 Органелла под цифрой 7 содержит геном, родственный геномам красных водорослей

Время ответа: 19.03.2022 10:12:45

Баллы: **1** из 3

Задание ID8 (Задача № 1281347)

Этот странный небольшой организм был впервые обнаружен в конце XIX века на стенках морского аквариума, и лишь недавно удалось найти свидетельства его присутствия в дикой природе.

Для каждого из следующих утверждений о данном организме укажите, является оно верным или неверным:

Ответ ученика

- 🗶 Данный организм перемещается в основном за счёт работы таких белков как миозин и актин
- 🗶 Данный организм имеет протонефридии в качестве органов выделения
- ✔ Данный организм относится к типу Пластинчатые (Placozoa), включающему всего несколько видов
- ✓ Данный организм питается в основном путем фагоцитоза оседающих на его поверхность пищевых частиц Основная функция секреторных клеток, расположенных только по краю тела – продукция пищеварительных
- ферментов, а липофильные клетки, расположенные на вентральной стороне, выделяют нейропептиды, регулирующие поведение организма
- 🗶 Данный организм имеет диплофазный жизненный цикл с гаметической редукцией

Время ответа: 19.03.2022 10:15:28

Баллы: **1.5** из 3

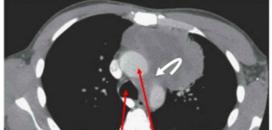
Задание ID9 (Задача № 1281349)

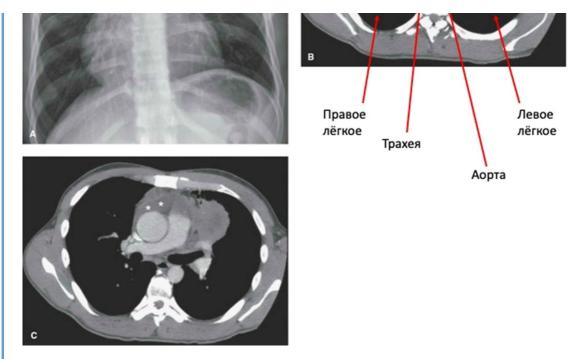
В 2007 году у побережья Филиппин на глубине около 2500 м при помощи дистанционно-управляемой субмарины «ROV Global Explorer» было обнаружено необычное животное, длиной до 9 см, издалека напоминающее кальмара и названное исследователями «squidworm» («кальмарочервь»), или по-научному - Teuthidodrilus samae.

Для каждого из следующих утверждений о данном организме укажите, является оно верным или неверным:

Ответ ученика

- ✓ Данный организм имеет планктонную личинку трохофору
- ✔ Данный организм можно отнести к животным, обладающим вторичноротостью
- 🗶 Сходство данного организма с кальмаром является результатом близкого эволюционного родства
- 🗶 Данный организм принадлежит к группе (подклассу) малощетинковые кольчатые черви» (Oligochaeta)
- 🗶 У данного организма редуцированы пальпы и перистомиум
- ✓ Данный организм имеет нервную систему в виде брюшной нервной цепочки


Время ответа: 19.03.2022 10:17:31


Баллы: **2.5** из 3

Задание ID14 (Задача № 1281453)

На приём к врачу обратился мужчина с жалобами на прогрессирующую в течение дня мышечную утомляемость. По результатам рентгенографии органов грудной клетки (A) выявлено новообразование средостения (пространства грудной клетки между двумя плевральными полостями) с неровными контурами. По данным компьютерной томографии (B, C) заподозрена злокачественная опухоль тимуса — инвазивная тимома; отмечено врастание в перикард (с наличием жидкости в перикарде) и клетчатку средостения. Известно, что у около четверти пациентов с тимомой диагностируют аутоиммунное заболевание миастения гравис, которое развивается вследствие избыточной продукции Т-лимфоцитами антител к эпитопам клеток эпителиальной тимомы, имеющим схожую структуру с субъединицами ацетилхолинового рецептора.

Для каждого из следующих утверждений укажите, является оно верным или неверным:

Ответ ученика

- ж При сдавливании опухолью верхней полой вены будет отмечено набухание и расширение вен на животе и ногах
- ✓ При лечении глюкокортикостероидами мышечная утомляемость станет менее выраженной
- Для тимомы характерен местно-распространенный процесс с прорастанием в органы средостения, легкие и плевру
- После умеренной физической нагрузки у пациента можно отметить птоз (непроизвольное опущение верхнего века) и снижение силы рукопожатия
- 🗶 При условии хирургического удаления тимомы можно ожидать исчезновение симптомов миастении
- ж Массивное накопление жидкости в перикарде проявляется выраженным повышением артериального давления

Время ответа: 19.03.2022 10:22:17

Баллы: 2.5 из 3

Задание ID15 (Задача № 1281457)

Газообмен между альвеолами и легочными капиллярами приводит к повышению концентрации кислорода и снижению концентрации углекислого газа в малом круге кровообращения. Далее кровь поступает в магистральные артерии большого круга, где исследователю возможно осуществить измерение газового состава плазмы крови (а точнее, парциальный давлений газов — pO₂, pCO₂). Более низкие значения парциального давления свидетельствуют о меньшем объеме растворенного соответствующего газа.

Представьте, что из кровотока одномоментно были элиминированы все эритроциты, при этом легкие функционируют нормально, и сразу после этого произведено измерение газового состава крови.

Для каждого из следующих утверждений укажите, является оно верным или неверным:

Ответ ученика

- В дальнейшем, клетки организма испытают тяжелую гипоксию вследствие недостаточности растворенного в крови кислорода
- **х** Артериальное pO₂ не изменится
- 🗶 Общее содержание кислорода в артериальной крови не изменится
- ✓ Артериальное рСО₂ не изменится
- Клетки организма испытают тяжелую гипоксию вследствие резкого, одномоментного с элиминацией эритроцитов, падения р O_2 в плазме
- ✔ Общее содержание углекислого газа в артериальной крови не изменится

Время ответа: 19.03.2022 10:25:48

Баллы: **1.5** из 3

Задание ID19 (Задача № 1281468)

Некоторым людям кажется, что биохимия — очень сложная наука, потому что ее изучение требует запоминания множества соединений. В частности, согласно *E. coli* Metabolome Database метаболом кишечной палочки (*Escherichia coli*) содержит как минимум 3755 малых молекул. Однако подобная позиция совершенно не верна! Дело в том, что многие биомолекулы синтезируются путем объединения относительно небольшого количества типовых звеньев, словно живые организмы играют в химический конструктор. На практике знание основных блоков метаболизма, а также способов их соединения позволяет достаточно уверенно ориентироваться в многообразии биологических веществ. На рисунке представлена одна из молекул, которая в больших количествах присутствует в цитоплазме микобактерий (*Mycobacterium*), в том числе — Палочки Коха (*Mycobacterium tuberculosis*), опаснейшего возбудителя туберкулеза. Мы выделили четыре ее фрагмента черным цветом (учтите, что некоторые атомы и связи остались обозначены серым). Обратите внимание, что фрагменты 2 и 3 пересекаются.

Внимательно рассмотрите рисунок, после чего выберите, какие утверждения являются верными, а какие – неверными:

Ответ ученика

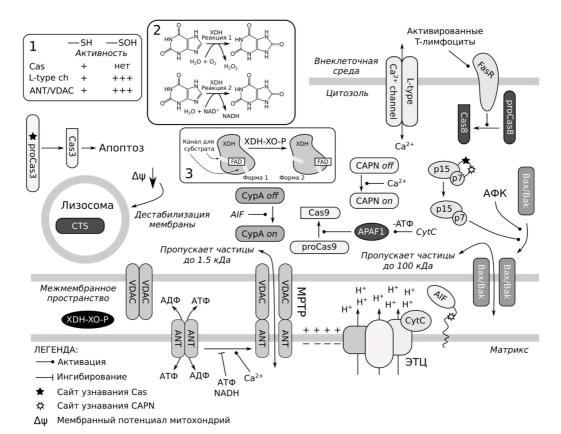
- 🗶 Углеродный фрагмент 1 может быть получен в ходе β-окисления жирных кислот
- 🗶 В представленном соединении присутствует β-О-гликозидная связь
- Представленное соединение включает остаток аминокислоты цистеина, которая не является протеиногенной, поскольку находится в D-конфигурации
- ✔ Фрагмент 2 может быть обнаружен в белках, синтезированных на рибосомах
- 🗶 Представленное соединение включает в свой состав остаток маннозы
- ✓ Фрагмент 4 может быть обнаружен в липидах

Время ответа: 19.03.2022 10:29:42

Баллы: **2** из 3

Задание ID20 (Задача № 1281471)

Одним из наиболее изучаемых явлений в современной науке является регулируемая клеточная смерть, поскольку она лежит в основе многих физиологических и патологических процессов. На рисунке изображены упрощенные события, которые связаны с тем, как клетки инициируют свою гибель. Обратите внимание на то, что далеко не все последовательные события соединены стрелками на схеме - мы предлагаем вам разобраться в их связи самостоятельно.


В рамке 1 вы можете видеть, как активность некоторых белков зависит от состояния остатков цистеина в их

Рамка 2 изображает две реакции, которые способен катализировать цитозольный фермент XDH в одной из своих форм (мы умышленно не указываем соответствие форма/реакция).

Рамка 3 иллюстрирует конверсию формы 1 XDH в форму 2 под действием протеазы XDH-XO-P, в норме локализованной в митохондриях.

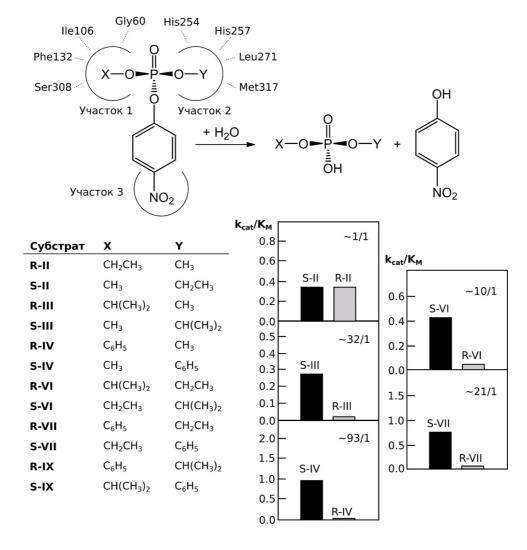
Cas — ферменты каспазы (протеазы); proCas — их неактивные формы; CTS — ферменты катепсины (мощные неспецифические протеазы); CAPN — протеазы кальпаины; CytC — цитохром с; MPTP — комплекс белков митохондриальной поры; CypA — белок-активатор эндонуклеаз; ЭТЦ — электрон-транспортная цепь; АФК — активные формы кислорода; (-ATФ) над реакцией обозначает расход этого соединения в ходе процесса; считайте, что 1 кДа численно равен 1000 г/моль. Названия других белков мы умышленно не расшифровываем.

В тех случаях, когда процесс контролируют несколько факторов, они могут действовать независимо, а при совместном действии их эффекты суммируются. При решении задания не забывайте об осмотических эффектах, а также о том, что митохондрии служат одним из депо, поглощающим кальций при его повышении в цитозоле!

Для каждого из утверждений выберите, является оно верным или неверным:

Ответ ученика

- 🗸 Повреждение внешней мембраны митохондрий приведет к эндогенной генерации внутриклеточных АФК
- ж Высокая концентрация АФК в цитозоле вызывает выход цитохрома С из митохондрий через Bax/Bak-поры, что приводит к Cas3-зависимой клеточной смерти
- ✔ Cas3-зависимый апоптоз может быть инициирован только внеклеточными стимулами
- Ингибиторы каспаз сильнее подавляют клеточную смерть, вызванную высокой концентрацией АФК в цитозоле, нежели вызванную низкой концентрацией АФК в цитозоле
- При увеличении концентрации Ca²⁺ в митохондрии, усилится ток катионов в матрикс, что в конечном итоге ✓ приведет к разрушению митохондриальной мембраны и к выходу цитохрома с в цитозоль даже при
- $\mathbf x$ В физиологических условиях ANT преимущественно переносит ATФ в матрикс и АДФ в межмембранное пространство


Время ответа: 19.03.2022 10:42:46

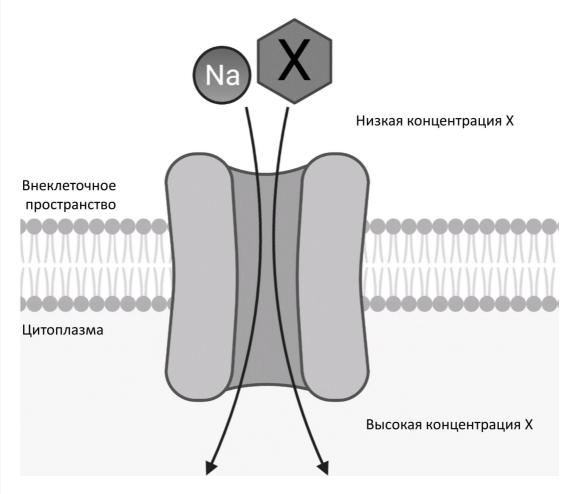
ингибировании Bax/Bak

Баллы: **2** из 3

Задание ID21 (Задача № 1281475)

Бактериальная фосфотриэстераза (РТЕ) катализирует гидролиз P-O, P-F, P-S связей в различных инсектицидах и фосфорорганических нервных ядах. Общую схему реакции вы можете видеть в верхней части рисунка. Кристаллографические работы показали, что фермент связывает свои субстраты при помощи трех участков в активном центре. В 2001 году Chen-Goodspeed с коллегами решили выяснить, какими факторами регулируется субстратная специфичность РТЕ. Для этого они воспользовались библиотекой фосфорорганических соединений, представленной в нижней левой части рисунка. Каждое из веществ добавляли к ферменту, после чего измеряли кинетические параметры реакции. В качестве критерия эффективности фермента использовали величину $k_{\text{cat}}/K_{\text{M}}$. Результаты некоторых измерений вы можете обнаружить в правой нижней части рисунка. Мы также указали примерное соотношение эффективностей катализа для каждой пары соединений (коэффициент селективности S/R, в правом верхнем углу окошка).

Внимательно рассмотрите рисунок, после чего для каждого из утверждений выберите, является оно верным или неверным:


Ответ ученика

- Замены Phe132Gly/His257Туг приведут к тому, что для пары S-II/R-II коэффициент селективности станет выше 1/1
- В отношении пары S-IX/R-IX коэффициент селективности будет уменьшаться в ряду ферментов с мутациями $Gly60Ala \rightarrow Ile106Gly \rightarrow Ile106Gly/Phe132Gly/His257Tyr/Ser308Gly$
- ✓ Мутация Gly60Ala приведет к тому, что для пары S-III/R-III коэффициент селективности станет ниже 32/1
- Фермент с заменами Ile106Ala/Phe132Ala будет иметь более низкий коэффициент селективности в отношении пары S-VI/R-VI, нежели фермент с заменами Ile106Ala/Phe132Ala/His257Trp
- Фермент с заменами Ile106Gly/Phe132Gly/Ser308Gly будет иметь более низкий коэффициент селективности в отношении пары S-VII/R-VII, нежели фермент с заменами Ile106Gly/Phe132Gly/His257Tyr/Ser308Gly
- В отношении пары S-IX/R-IX коэффициент селективности будет уменьшаться в ряду ферментов с мутациями $Ile106Gly/Phe132Gly/His257Tyr/Ser308Gly \rightarrow Ile106Gly \rightarrow Gly60Ala$

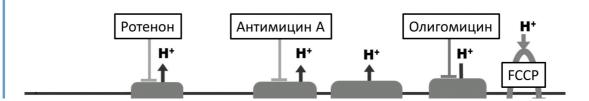
Время ответа: 19.03.2022 10:51:36

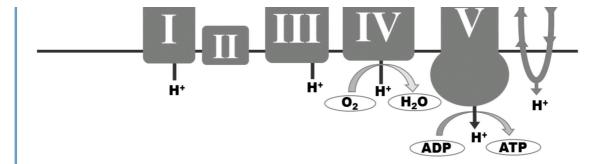
Баллы: **1** из 3

На рисунке изображена схема транспорта вещества Х в клетку с помощью одного из типов транспортеров.

Проанализируйте представленную схему и для каждого из следующих утверждений укажите, является оно верным или неверным:

Ответ ученика


- Транспорт ионов натрия происходит по градиенту концентрации (из области с большей концентрацией в область с меньшей)
- **ж** Ингибирование транспортера SGLT2, подобного приведенному на схеме, способно предотвращать реабсорбцию глюкозы в нефронах, что может использоваться для лечения сахарного диабета II типа
- ullet Вещество X транспортируется в клетку по механизму вторично-активного транспорта
- ✔ Вещество X может являться углекислым газом
- увеличение концентрации ионов натрия во внеклеточной среде приведёт к снижению транспорта вещества X в клетку
- ✓ Тип транспортера, изображённый на схеме, может функционировать в кишечнике


Время ответа: 19.03.2022 10:55:28

Баллы: **1** из 3

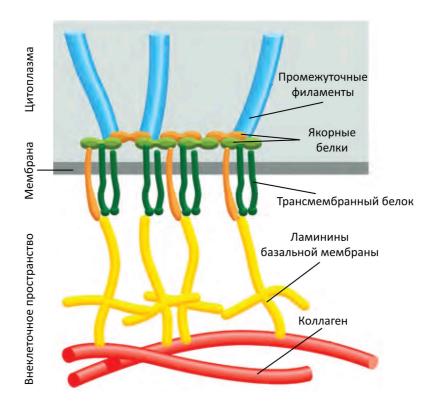
Задание ID26 (Задача № 1281489)

Дыхательная цепь митохондрий – один из основных путей синтеза АТФ в клетке. Использование различных модуляторов дыхательной цепи (см. рисунок ниже) позволяет рассчитать различные метаболические параметры.

Ротенон, антимицин A и олигомицин ингибируют соответственно комплексы I, III и V. FCCP является протонофором – он позволяет протонам свободно проникать через митохондриальную мембрану.

Изучите представленную схему и подумайте, как повлияет на работу дыхательной цепи добавление в клетку каждого из веществ. Для каждого из следующих утверждений укажите, является оно верным или неверным:

Ответ ученика


- 🗶 Добавление антимицина А способствует продукции активных форм кислорода в митохондриях
- 🗶 Добавление олигомицина повышает активность гликолиза в клетке
- 🗶 Максимальное потребление кислорода достигается добавлением ротенона
- Добавление комбинации ротенона и антимицина А практически полностью подавляет работу дыхательной цепи
- ✓ Добавление FCCP ингибирует продукцию АТФ в дыхательной цепи
- Чтобы оценить, какой процент потребления кислорода клеткой связан с продукцией АТФ, необходимо добавить ротенон

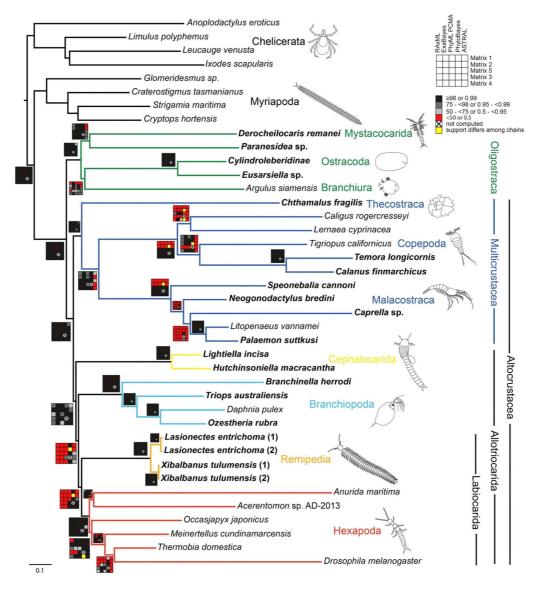
Время ответа: 19.03.2022 10:58:34

Баллы: **1.5** из 3

Задание ID27 (Задача № 1281493)

На рисунке изображена схема одного из типов клеточных контактов.

Изучите схему и для каждого из следующих утверждений укажите, является оно верным или неверным:


- 🗶 Наиболее часто данный тип межклеточных контактов встречается в нервной ткани
- ✔ В формировании данного типа контакта принимают участие белки-интегрины
- 🗶 Промежуточные филаменты, с которыми связывается данный тип контакта, могут состоять из кератина
- Основная функция изображённого на схеме контакта поддержание различий между апикальной и базолатеральной мембранами клетки
- 🗶 На рисунке изображена схема полудесмосомы
- 🗸 Нарушение функции данного типа клеточных контактов может вызвать тяжёлые кожные заболевания

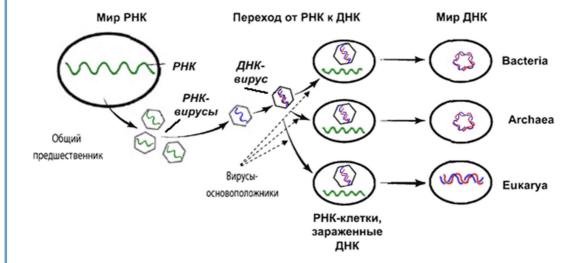
Время ответа: 19.03.2022 11:00:53

Баллы: 1.5 из 3

Задание ID31 (Задача № 1281505)

Относительно недавно было установлено, что насекомых (Insecta) следует рассматривать как сухопутную ветвь ракообразных (Crustacea). Это открытие изменило взгляды на эволюцию как ракообразных, так и насекомых, сформировав представление о таксоне Pancrustacea, который объединил ракообразных с шестиногими (Нехароda, насекомые и их ближайшие родственники). Однако, несмотря на интенсивные исследования, точная картина родственных связей различных линий ракообразных еще не установлена. Ниже приведена филогения ракообразных и их ближайших родственников из типа членистоногие, построенная на основе большого объема геномных данных (Schwentner M. et al., 2017). Для каждого узла предлагаемого дерева приведена поддержка топологии в зависимости от применяемого метода вычислений и матрицы: черный цвет означает высокую поддержку, красный – низкую поддержку, а желтый - варьирование степени поддержки в разных итерациях методах. Если большое число разных методов с использованием разных матриц демонстрирует низкую поддержку, это означает высокую вероятность того, что топология в этом дереве в реальности может оказаться другой: имеющиеся данные не позволяют утверждать истинность этой топологии.

Проанализируйте представленную схему и для каждого из следующих утверждений укажите, является оно верным или неверным:


- 🗸 Высшие раки (Malacostraca) не являются ближайшими среди ракообразных родственниками Насекомым
- Таксон Mandibulata, объединяющий многоножек (Myriapoda) и ракообразных в широком смысле (включая шестиногих), является монофилетическим
- ▶ Ракообразные, если не включать в этот таксон Шестиногих (Hexapoda), являются парафилетическим таксоном
- Согласно топологии представленного дерева Жаброногие (Branchiopoda) являются сестринской группой к кластеру, объединяющему Ремипедий (Remipedia) и Шестиногих (Hexapoda)
- 🗶 Представленные данные позволяют рассматривать группу Cephalocorida как вероятных предков насекомых
- 🗶 Узел, в котором расходятся ветви Ремипедий (Remipedia) и Шестиногих (Hexapoda), имеет высокую поддержку

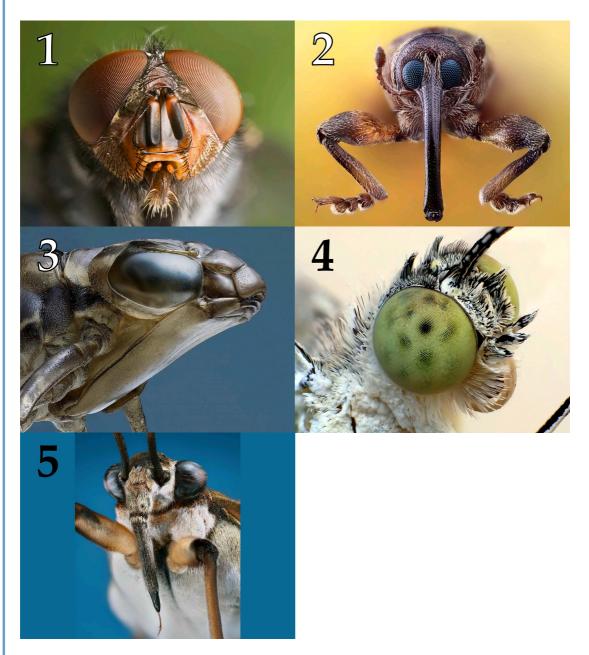
Время ответа: 19.03.2022 11:10:57

Баллы: **3** из 3

Задание ID33 (Задача № 1281511)

Мир РНК — гипотетический этап возникновения жизни на Земле, когда ансамбли молекул рибонуклеиновых кислот выполняли как функцию хранения генетической информации, так и катализ химических реакций. Впоследствии из их ассоциаций возникла современная ДНК-РНК-белковая жизнь, обособленная мембраной от внешней среды. Идея мира РНК была впервые высказана Карлом Вёзе в 1968 году. Вопрос эволюции современных клеток, использующих ДНК в качестве носителя наследственной информации, от гипотетических предков, использующих РНК для тех же целей, остается очень дискуссионным. Вероятно, большую роль в этих эволюционных процессах играли вирусы, которые могут использовать оба типа нуклеиновых кислот в качестве носителя генетической информации. На иллюстрации ниже приведена довольно спорная, но интересная гипотеза Патрика Фортера, предлагающая возможный эволюционный путь от РНК-организмов к ДНК.

Проанализируйте представленную схему и для каждого из следующих утверждений укажите, является оно верным или неверным согласно предложенной концепции:


Ответ ученика

- ✔ Первыми использовать ДНК в качестве носителя генетической информации стали вирусы
- 🗶 Одноцепочечные нуклеиновые кислоты появились позже двухцепочечных в процессе эволюции
- 🗶 Первые ДНК-клетки появились в ходе встраивания генома ДНК-вируса в геном хозяина
- 🗶 Первые ДНК-клетки появились в ходе встраивания генома РНК-вируса в геном хозяина
- Три линии клеточных организмов (Bacteria, Archaea, Eukarya), произошли независимо от разных предшественников (РНК-клеток) согласно приведенной схеме
- ✔ Вирусы происходят от доклеточных организмов согласно приведенной схеме

Время ответа: 19.03.2022 11:13:28

Баллы: **2** из 3

Ниже приведены фотографии различных насекомых:

После данной формулировки задания приведены три столбца элементов для сопоставления:

В левом столбце приведен список систематических групп (отряды или подотряды) насекомых (список избыточен – в нем есть лишние названия).

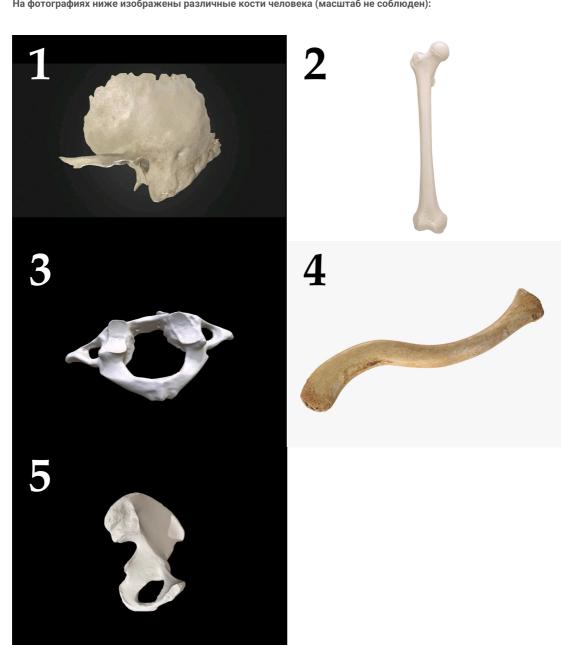
В среднем столбце указаны номера фотографий (сами фото приведены выше).

В правом столбце приведен список типов ротовых аппаратов (список избыточен – в нем есть лишние названия).

Загляните в глаза этим удивительным созданиям и соотнесите «портреты» насекомых (Insecta) с систематическими группами, к которым они относятся и типами имеющихся у них ротовых аппаратов.

Каждый элемент из среднего столбца можно соединить стрелкой <u>только с одним</u> элементом в левом столбце и/или в правом столбце. Каждая стрелка <u>должна быть уникальной</u>, т.е. провести две стрелки от двух элементов среднего столбца к одному и тому же элементу левого (или правого) столбца нельзя!

Для того, чтобы провести стрелку перетяните мышкой элемент к которому вы проводите стрелку поверх элемента от которого должна идти стрелка и отпустите. Чтобы отменить стрелку между элементами повторите их перемещение.



19.03.2022 11:20:30 Время ответа:

3 из 5 Баллы:

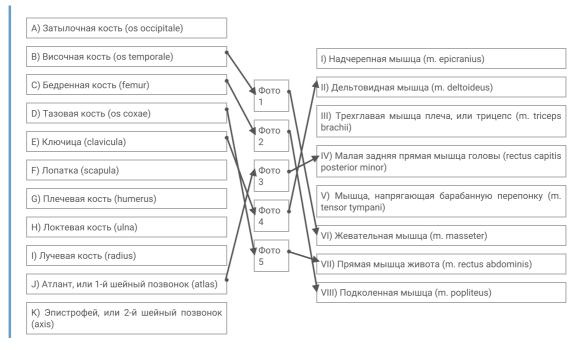
Задание ID38 (Задача № 1281526)

На фотографиях ниже изображены различные кости человека (масштаб не соблюден):

После данной формулировки задания приведены три столбца элементов для сопоставления:

В левом столбце приведен список названий костей (список избыточен - в нем есть лишние названия).

В среднем столбце указаны номера фотографий (сами фото приведены выше).

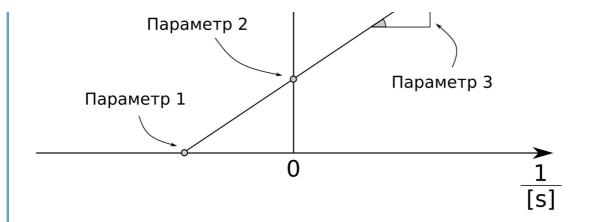

В правом столбце приведен список названий мышц (список избыточен - в нем есть лишние названия).

Определите название каждой из костей и соотнесите её с конкретной мышцей, которая к ней прикрепляется, из предложенного списка.

Каждый элемент из среднего столбца можно соединить стрелкой <u>только с одним</u> элементом в левом столбце и/или в правом столбце. Каждая стрелка <u>должна быть уникальной</u>, т.е. провести две стрелки от двух элементов среднего столбца к одному и тому же элементу левого (или правого) столбца нельзя!

Для того, чтобы провести стрелку перетяните мышкой элемент к которому вы проводите стрелку поверх элемента от которого должна идти стрелка и отпустите. Чтобы отменить стрелку между элементами повторите их перемещение.

Ответ ученика


Время ответа: 19.03.2022 11:27:00

Баллы: **4.5** из 5

Задание ID40 (Задача № 1281532)

На рисунке представлено уравнение Михаэлиса-Ментен, описывающее скорость (v) ферментативной реакции в зависимости от концентрации субстрата [s] при определенных условиях (которые, для простоты, мы опустим).
V_{тах} — максимальная скорость реакции, К_М — константа Михаэлиса, в ближайшем приближении характеризующая сродство фермента к субстрату. До эпохи персональных компьютеров работа с уравнением Михаэлиса-Ментен была не очень удобна, поскольку зависимость v от [s] нелинейна. Чтобы обойти данную проблему, ученые придумали различные способы линеаризации этого выражения. В частности, на рисунке вы можете видеть способ Лайнувера-Берка. Мы выделили три численных параметра на графике (пересечение с осями X и Y, а также тангенс угла наклона).

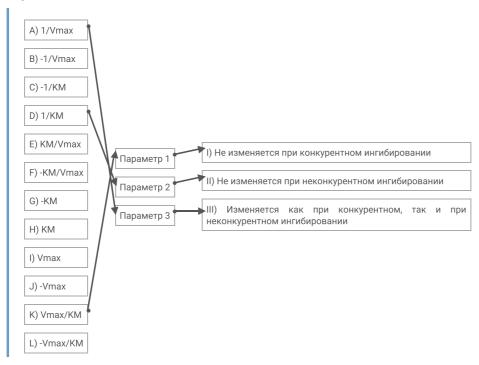
$$v = \frac{[s] \cdot V_{max}}{[s] + K_{M}}$$

Известно, что активность ферментов может быть снижена добавлением ингибиторов. Конкурентные ингибиторы чаще всего соревнуются с субстратом за активный центр фермента. Неконкурентные ингибиторы не влияют на связывание фермента с субстратом, но снижают общую каталитическую активность белка.

После данной формулировки задания приведены три столбца элементов для сопоставления:

В левом столбце приведен список численных значений параметров (список избыточен).

В среднем столбце указаны номера параметров (указания на них приведены на рисунке выше).


В правом столбце приведен список свойств параметров.

Установите правильные соответствия между параметрами графика (1-3), их численными значениями (A-L) и свойствами (I-III).

Каждый элемент из среднего столбца можно соединить стрелкой <u>только с одним</u> элементом в левом столбце и/или в правом столбце. Каждая стрелка <u>должна быть уникальной</u>, т.е. провести две стрелки от двух элементов среднего столбца к одному и тому же элементу левого (или правого) столбца нельзя!

Для того, чтобы провести стрелку перетяните мышкой элемент к которому вы проводите стрелку поверх элемента от которого должна идти стрелка и отпустите. Чтобы отменить стрелку между элементами повторите их перемещение.

Ответ ученика

Время ответа: 19.03.2022 11:36:27

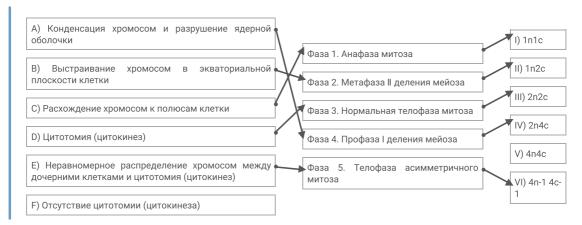
Баллы: **0.5** из 3

Большинство клеток человека несут диплоидный набор хромосом, однако в результате прохождения различных фаз клеточного деления, может меняться как количество хромосом в клетке – плоидность клетки (n), так и количество нитей ДНК (c), причём эти значения не всегда совпадают.

После данной формулировки задания приведены три столбца элементов для сопоставления:

В левом столбце приведен список событий, происходящих во время различных фаз (список избыточен – в нем есть лишние события).

В среднем столбце указаны названия фаз деления.

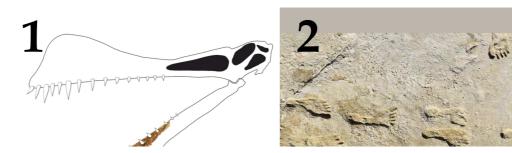

В правом столбце приведен список количества хромосом (плоидность) и нитей ДНК в клетке (список избыточен – в нем есть лишние значения).

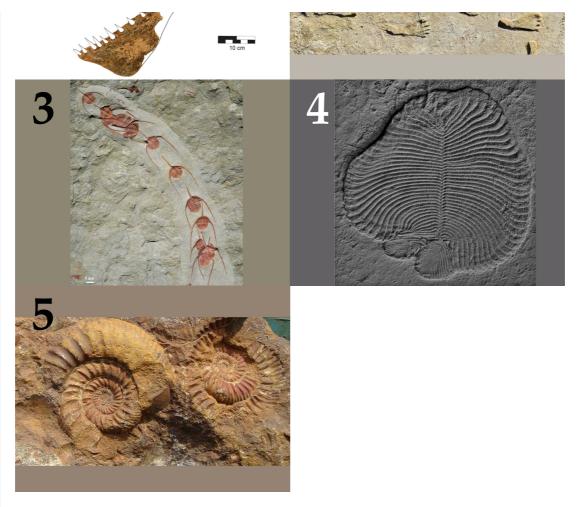
Соотнесите фазу клеточного деления с событием, происходящим во время этой фазы, и количеством хромосом (плоидностью) и нитей ДНК.

Каждый элемент из среднего столбца можно соединить стрелкой <u>только с одним</u> элементом в левом столбце и/или в правом столбце. Каждая стрелка <u>должна быть уникальной</u>, т.е. провести две стрелки от двух элементов среднего столбца к одному и тому же элементу левого (или правого) столбца нельзя!

Для того, чтобы провести стрелку перетяните мышкой элемент к которому вы проводите стрелку поверх элемента от которого должна идти стрелка и отпустите. Чтобы отменить стрелку между элементами повторите их перемешение.

Ответ ученика


Время ответа: 19.03.2022 11:39:43


Баллы: 4.5 из 5

Задание ID44 (Задача № 1281542)

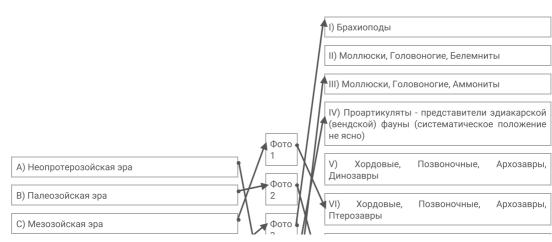
Палеонтологам часто приходится иметь дело с обрывочными сведениями о живых организмах. Иногда реконструкция всего облика древнего животного строится на основе фрагментов костей и сравнения с возможными родственниками. Кроме того, большая часть палеонтологического материала представлена следами жизнедеятельности организмов.

Ниже приведены фотографии различных палеонтологических материалов:

После данной формулировки задания приведены три столбца элементов для сопоставления:

В левом столбце приведен список названий эр.

В среднем столбце указаны номера фотографий (сами фото приведены выше).

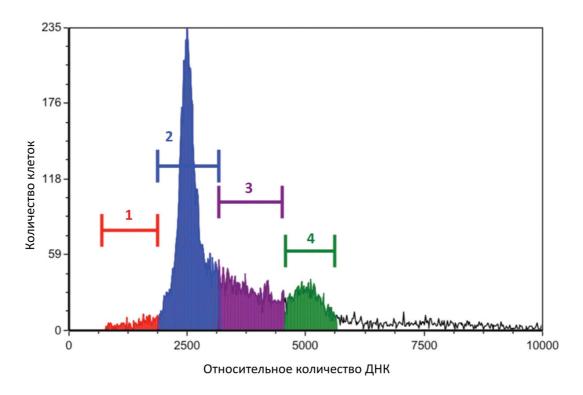

В правом столбце приведен список возможных систематических положений животных (список избыточен – в нем есть лишние элементы).

Проанализируете представленные фотоматериалы и сделайте вывод о возможной таксономической принадлежности животного и вероятном отрезке геохронологической школы, в котором можно обнаружить представителей этого таксона.

Каждый элемент из среднего столбца можно соединить стрелкой <u>только с одним</u> элементом в левом столбце и/или в правом столбце. Каждая стрелка <u>должна быть уникальной</u>, т.е. провести две стрелки от двух элементов среднего столбца к одному и тому же элементу левого (или правого) столбца нельзя!

Для того, чтобы провести стрелку перетяните мышкой элемент к которому вы проводите стрелку поверх элемента от которого должна идти стрелка и отпустите. Чтобы отменить стрелку между элементами повторите их перемещение.

Ответ ученика



Время ответа: 19.03.2022 11:42:46

Баллы: **2.5** из 5

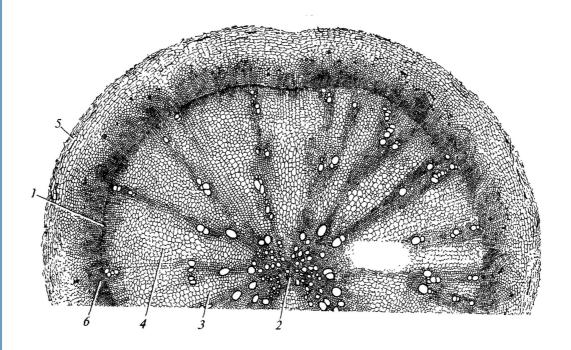
Задание ID53 (Задача № 1281553)

Окрашивание клеток флуоресцентным красителем йодидом пропидия позволяет оценить количество ДНК в клетке. На рисунке вы видите гистограмму распределения соматических клеток с различным количеством ДНК. По ней можно определить процент популяции клеток, находящихся в различных фазах клеточного цикла. Область 2 на рисунке соответствует G1-фазе клеточного цикла.

Ответьте на следующие подвопросы:

- 1) Какой фазе клеточного цикла соответствует область гистограммы 3?
- 2) В какой области гистограммы находятся клетки в фазе GO?
- 3) В какой области гистограммы находятся клетки, делящиеся митозом?
- 4) К каким изменениям гистограммы приведёт обработка клеток нокодазолом, который нарушает полимеризацию микротрубочек?
- 5) О чём свидетельствует увеличение содержания клеток в области 1?

При внесении ответа в поле ниже, пожалуйста, сохраняйте нумерацию подвопросов на которые вы даете ответы!


- 1 это S период и G2, в котором происходит удвоение ДНК.
- 2 Клетки фазы G0 на гистограмме должны свопадать с клетками фазы G1,т.к. эта фаза наступает именно после G1, сл. не будет удвеония ДНК. Именно поэтому на гистограмме пик на области 2, т.к. большинство клеток диффернецированы, сл. им не нужно делится.
- 3 Фаза митоза расположена в области 4, т.к. в митозе удвоенно количество ДНК отностительно G1.
- 4 Возможно, нарушение полимеризации трубочек привдет к тому, что при делении не будет происходит расхождения ядер с удвоеными хромомсоми, т.к. будут отсутствовать нити веретена. Тогда, возможно, повысится содержаение клеток, находящихся в зоне справа от области 4, т.к. будет происходить удвоение ДНК не разошедешихся хромосом, что приведет к полиплоидизации.
- 5 Увеличинеие количества клеток в зоне 1 будет свидетельствовать о том, что происходит актвиное деление клеток мейзом, т.к. там количество ДНК в клетках примерно в два раза меньше, чем в области 2, то есть не 2n2c, а nc. То есть идет подготовка к половому размножению с образованием гамет.

Время ответа: 19.03.2022 12:01:08

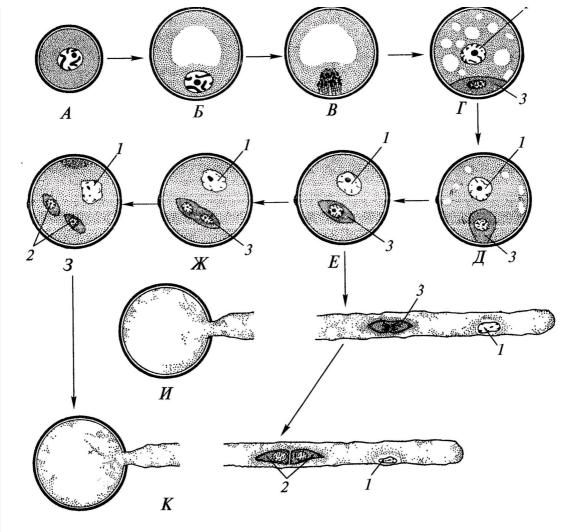
Баллы: **7** из 10

Задание ID4 (Задача № 1281335)

На рисунке показан поперечный срез одного из видоизменённых растительных органов.

Для каждого утверждения укажите, является оно верным или неверным для данного органа:

Ответ ученика


- 🗶 Это поперечный срез клубня
- ✔ Основная функция данного органа запас питательных веществ
- ✓ Под цифрой 2 показана первичная ксилема
- ✓ Под цифрой 5 показана эпидерма
- 🗶 Этот орган часто встречается у растений, обитающих на заболоченной почве
- 🗶 Данный орган принадлежит двудольному растению

Время ответа: 19.03.2022 13:04:56

Баллы: **2** из 3

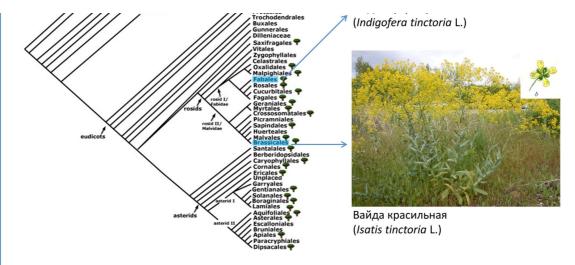
Задание ID5 (Задача № 1281337)

На схеме показаны варианты развития мужского гаметофита (пыльцевого зерна) у цветковых растений. Начальная стадия (A) — микроспора.

Проанализировав схему, укажите для каждого утверждения, является оно верным или неверным:

Ответ ученика

- ✔ Структуры под цифрой 2 являются гаплоидными
- ✔ Трёхклеточное пыльцевое зерно прорастает на стадии 3
- ✓ Под цифрой 3 показана спермиогенная клетка
- 🗶 Под цифрой 2 показаны сперматозоиды
- 🗶 При прорастании пыльцевого зерна спермиогенная клетка образует пыльцевую трубку
- 🗶 Структура под цифрой 1 является гаплоидной


Время ответа: 19.03.2022 13:09:04

Баллы: **2.5** из 3

Задание ID6 (Задача № 1281340)

На молекулярно-филогенетическом дереве цветковых растений (по Stevens, P.F., www.mobot.org) голубым цветом отмечены порядки, в которые входят растения-источники синей краски: вайда красильная (Isatis tinctoria L.) и индигофера красильная (Indigofera tinctoria L.).

Обозначения:

monocots - однодольные;

eudicots - высшие двудольные;

magnoliids – магнолииды или примитивные двудольные;

commelinids - коммелиниды;

rosids - розиды;

asterids – астериды;

rosidI/Fabidae – фабиды;

rosidII/Malvidae – мальвиды;

asteridl - астериды I;

asteridII - астериды II;

Проанализируйте дерево и укажите для каждого утверждения, является оно верным или неверным:

Ответ ученика

- 🗶 Вайда и индигофера являются однодольными растениями
- 🗶 Если объединить порядки Fabales и Brassicales, то вместе они образуют монофилетическую группу
- 🗶 Индигофера входит в группу rosidII/Malvidae
- 🗶 Вайда и индигофера имеют спайнолепестный венчик
- ✔ Вайда входит в группу rosids
- ✓ Цветок индигоферы является зигоморфным

Время ответа: 19.03.2022 13:11:29

Баллы: **3** из 3

Задание ID11 (Задача № 1281355)

Известно, что у растительноядных млекопитающих пищеварительная система, в частности её отдельные органы, очень сложно устроены. Перед вами на фото представлена внутренняя поверхность одного из отделов такого органа.

Проанализируйте представленное фото и для каждого из следующих утверждений укажите, является оно верным или неверным:

Ответ ученика


- это внутренняя поверхность отдела «сетка», из которого происходит отрыгивание пищи для повторного пережёвывания
- ✔ Рубец, сетка и книжка имеют общее название "преджелудкок"
 Многокамерный желудок является эволюционным приспособлением для синтеза незаменимых аминокислот
- 🗴 и свойственен отрядам Зайцеобразные (Lagomorpha), Парнокопытные (Artiodactyla), Непарнокопытные (Perissodactyla)
- 🗶 Из отдела «сычуг» пища попадает обратно в пищевод на повторное пережёвывание
- 🗸 Самым большим отделом многокамерного желудка у взрослых жвачных является рубец
- ✓ Это внутренняя поверхность отдела "книжка"

Время ответа: 19.03.2022 13:12:36

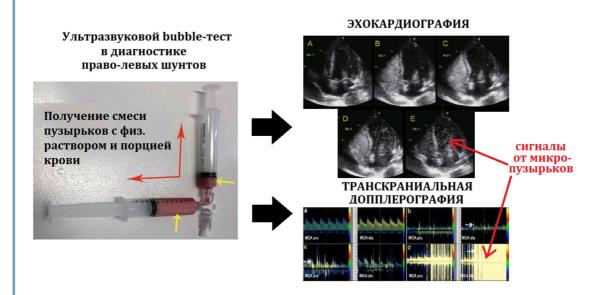
Баллы: **3** из 3

Задание ID12 (Задача № 1281358)

Известно, что строение определённого органа напрямую связано с его функцией. Перед вами на рисунке схематично изображён один из органов позвоночных.

Проанализируйте рисунок и для каждого из следующих утверждений укажите, является оно верным или неверным:

Ответ ученика


- 🗶 Многокамерный желудок свойственен НЕ всем травоядным
- 🗶 Многокамерный желудок домашней лошади состоит из 4-х камер
- 🗶 Это матка крупного рогатого скота
- ✔ Этот орган состоит из 4-х камер
- Входное и выходное отвестия закрываются при помощи сфинкторов, регулируемых вегетативной нервной системой
- У Это полый мышечный орган

Время ответа: 19.03.2022 13:13:43

Баллы: **2.5** из 3

Задание ID16 (Задача № 1281459)

Баббл-тест — это высокочувствительный метод ультразвуковой диагностики сброса крови справо-налево (из малого круга кровообращения в большой, минуя микроциркуляторное русло). В кровеносные сосуды вводят смесь физиологического раствора NaCl с пузырьками воздуха, взбитую в шприце, далее производят регистрацию потока микропузырьков в сердце или в сосудах головного мозга методом ультразвука. К самым частым праволевым кровеносным шунтам относят открытое овальное окно и легочные шунты.

Для каждого из следующих утверждений укажите, является оно верным или неверным:

Ответ ученика

- 🗶 Целесообразно производить инъекцию смеси микропузырьков в периферические вены
- ж При отсутствии право-левых шунтов у здорового человека сигналы от микропузырьков не регистрируются в правых отделах сердца
- **Е**сли пузырьки регистрируются в сосудах головного мозга, то испытуемому не рекомендуется заниматься глубоководным погружением
- микропузырьковый сигнал при наличии легочных шунтов регистрируется позднее, чем при наличии открытого
- ✓ Открытое овальное окно в большинстве случаев относится к врожденным порокам сердца
- ж Легочные право-левые шунты являются физиологическими шунтами и имеют важное функциональное значение

19.03.2022 13:16:33 Время ответа:

Баллы: **1.5** из 3

Задание ID17 (Задача № 1281461)

Иван-Царевич устроил международный конкурс красоты для лягушек и жаб, чтобы найти среди них заколдованную Царевну. В финал вышло 5 красивых, но ядовитых претенденток:

Амазонская двухцветная лягушка (Phyllomedusa bicolor)

ДЕРМОРФИН Агонист мю-опиоидных

рецепторов

Аргентинская песочная жаба (Rhinella arenarum)

АРЕНОБУФАГИН Блокатор Na+/K+-насоса

Эквадорская Трехцветная лягушка (Épipedobates anthonyi)

ЭПИБАТИДИН Неселективный агонист ацетилхолиновых рецепторов

Колорадская речная жаба (Incilius alvarius)

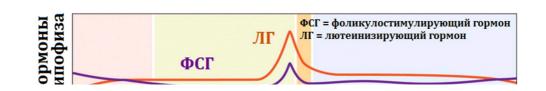
БУФОТЕНИН Агонист серотониновых рецепторов

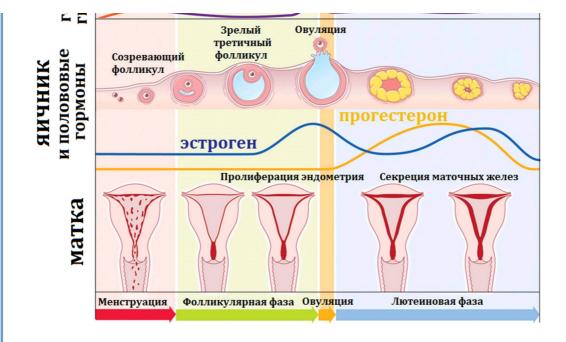
Колумбийская золотая лягушка (Phyllobates terribilis)

БАТРАХОТОКСИН Ингибитор инактивации потенциал-зависимых Na+-каналов

Царевич знал, что целовать ядовитых лягушек и жаб очень опасно, но забыл, какие признаки отравления могут появиться после общения с каждой из претенденток. Помогите Царевичу вспомнить их. Для каждого из следующих утверждений укажите, является оно верным или неверным:

Ответ ученика


- Дерморфин вызывает центральную остановку дыхания, сужение зрачков и запоры
- Эпибатидин вызывает повышенное слюноотделение, судороги, повышение артериального давления,
- мышечный паралич
- Аренобуфагин вызывает повышенное слюноотделение, судороги, повышение артериального давления, мышечный паралич
- 🗶 Буфотенин вызывает центральную остановку дыхания, сужение зрачков и запоры
- 🗶 Батрахотоксин вызывает эйфорию, манию, диарею, дрожание конечностей
- Буфотенин и подобные ему производные триптамина вызывают расширение сосудов


19.03.2022 13:19:38 Время ответа:

2.5 из 3 Баллы:

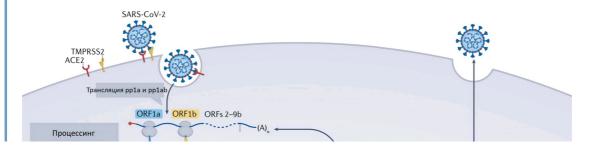
Задание ID18 (Задача № 1281464)

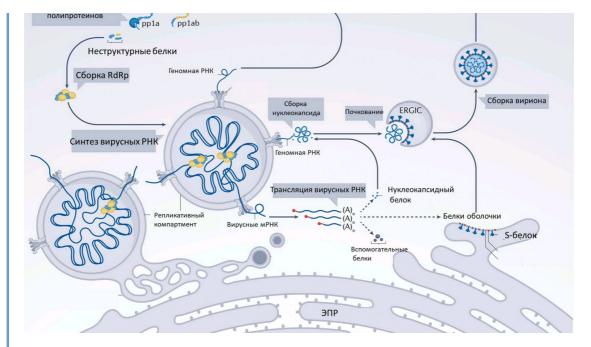
Женский менструальный цикл – это сложный физиологический процесс, состоящий из синхронизированных циклических изменений в промежуточном головном мозге, яичниках, матке:

Соответственно, отсутствие менструаций (аменорея) может быть вызвано патологией промежуточного мозга, яичников или матки. Для выяснения причины аменореи производят функциональные пробы: с изолированным введением прогестерона, либо с последовательным введением эстрогена и прогестерона. Гормоны вводятся в организм извне, но с физиологическими дозировками и длительностью.

Для каждого из следующих утверждений укажите, является оно верным или неверным:

Ответ ученика


- Отсутствие менструации после изолированного введения прогестерона указывает на стойкое отсутствие овуляции зрелого фолликула
- При атрезии (недоразвитии) фолликула введение прогестерона приведет к скудным менструациям из-за гипоэстрогении
- Наступление менструации при последовательном введении эстрогена и прогестерона может возникать при выраженной эстрогеновой недостаточности
- Отсутствие менструации при последовательном введении эстрогена и прогестерона может возникать при патологии эндометрия матки
- Появление менструации после эстроген-прогестероновой пробы при низком уровне ФСГ указывает на патологию яичников
- Избыточная продукция прогестерона при сохранной продукции эстрогена − это фактор риска злокачественной пролиферации клеток эндометрия


Время ответа: 19.03.2022 13:23:00

Баллы: **1.5** из 3

Задание ID22 (Задача № 1281477)

На рисунке показан жизненный цикл коронавируса SARS-CoV-2. Для проникновения в клетку вирус своим S-белком взаимодействует с белком ACE2, расположенным на мембране клетки. Кроме того, для слияния вируса с мембраной клетки необходимо расщепление вирусного S-белка клеточной протеиназой TMPRSS2. В цитоплазме происходит трансляция вирусных полипротеинов pp1a и pp1ab, которые затем нарезаются вирусными протеиназами на отдельные неструктурные белки, часть из которых образует вирусную PHK-полимеразу (RdRp), осуществляющую репликацию вирусной геномной PHK и синтез вирусных мPHK. Синтез вирусных PHK идет в специальном репликативном компартменте, который собирается в клетке под действием вирусных белков. После трансляции вирусных структурных белков происходит сборка вирионов, которые покидают клетку. Расшифровка аббревиатур: ORF — открытая рамка считывания, ERGIC — компартмент, включающий везикулы от эндоплазматического ретикулума, направляющиеся в комплекс Гольджи.

Рассмотрите схему и решите, какие вещества могут использоваться в качестве препаратов, блокирующих жизненный цикл SARS-CoV-2? Для каждого предложенного вещества укажите, подходит оно (отметьте, как «верно») или нет (отметьте, как «неверно»):

Ответ ученика

- 🗶 Вещества, ингибирующие только обратную транскриптазу
- ✔ Ингибиторы вирусной РНК-зависимой РНК-полимеразы
- ✔ Ингибиторы вирусных протеиназ, нарезающих полипротеины
- 🗶 Альфа-аманитин ингибитор клеточной РНК-полимеразы II
- ✔ Ингибиторы протеиназы TMPRSS2
- ✔ Антитела, блокирующие вирусную РНК

Время ответа: 19.03.2022 13:27:06

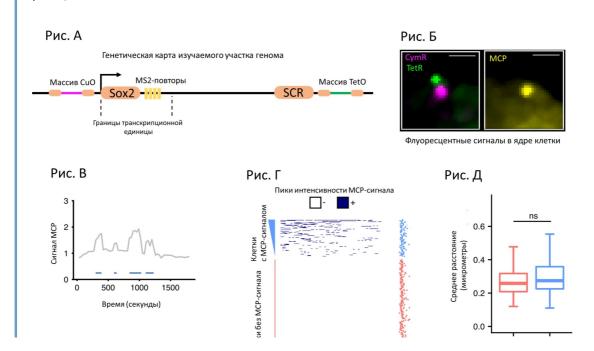
Баллы: 2.5 из 3

Задание ID23 (Задача № 1281481)

На рисунке показан механизм реакции, катализируемой ферментом X и имеющей три основных этапа (1, 2, 3). Для простоты от фермента X показана только часть полипептидной цепи с остатком лизина (Lys) в активном центре. Также для простоты некоторые части показанных на рисунке молекул заменены буквой «В». Стрелки показывают перемещения электронных пар, волнистые линии — продолжение полимерных молекул. Обратите внимание, что на этапе (1) высвобождается побочный продукт Y, структура которого не показана.

Ответ ученика

- ✓ Фермент X это ДНК-полимераза
- 🗙 Молекула Ү это аденозинмонофосфат
- ✓ Знаком «?» отмечено продолжение молекулы в сторону 3'-конца
- ★ Фермент X это РНК-лигаза
- 🗶 Связи, показанные пунктирными линиями, по своей природе являются ковалентными
- ★ Фермент X участвует в процессе транскрипции


Время ответа: 19.03.2022 13:32:44

Баллы: **2.5** из 3

Задание ID24 (Задача № 1281482)

В недавно опубликованной научной статье ученые изучали пространственное взаимодействие между геном Sox2 и энхансером этого гена – SCR (Sox2 control region). Для этого ученые использовали специальную клеточную линию, полученную на основе эмбриональных стволовых клеток мыши. В такой линии на расстоянии 5 тысяч пар нуклеотидов (т.п.н.) от энхансера встроили массив сайтов связывания белка TetR (TetO-сайты), на расстоянии 8 т.п.н. от промотора Sox2 встроили массив сайтов связывания белка CymR (CuO-сайты), а в транскрибируемую часть гена Sox2 встроили массив сайтов связывания белка оболочки бактериофага – MCP (MS2-сайты) (смотрите рис. А). Генетическое расстояние между промотором гена Sox2 и энхансером SCR составляет 200 т.п.н. Белок MCP связывается с сайтами MS2 только в составе молекулы PHK. Описанные генетические модификации затрагивали только одну из двух гомологичных хромосом. Ученые также доставили в полученные клетки гены, кодирующие белки TetR, MCP и CymR, при этом каждый был слит с флуоресцентным белком своего цвета, что делало описанные генетические элементы видимыми в флуоресцентном микроскопе (рис. Б).

На графике (рис. В) показана зависимость интенсивности флуоресценции сигнала МСР от времени в одной из клеток. Моменты времени, когда интенсивность сигнала превышала некое пороговое значение, обозначены горизонтальными черточками. На графике (рис. Г) собрана информация по популяции клеток – для каждой клетки черточками показаны моменты времени, когда интенсивность сигнала превышала пороговое значение. При этом клетки на графике ранжированы по суммарной интенсивности МСР-сигнала за время наблюдения: вверху клетки с самой высокой суммарной интенсивностью сигнала, к низу интенсивность сигнала убывает. Справа на этом графике для каждой клетки показано среднее расстояние (в микрометрах) между сигналами TetR и CymR. Это расстояние показано также для клеток, в которых не обнаруживался МСР-сигнал (правая нижняя часть графика). Графики типа «ящик с усами» (рис. Д) построены по данным графика нарис. Г. Графики на рис. Д отражают расстояния между TetR и CymR-сигналами для клеток, в которых не обнаруживался или обнаруживался МСР-сигнал. Здесь жирной горизонтальной чертой показано среднее значение, в границах «ящика» заключено 50% наблюдаемых значений и «усы» показывают минимальное и максимальное значения. Надпись «ns» и черная черта под ней показывают, что между группами отсутствует статистически достоверная разница.

Какие выводы можно сделать из этого эксперимента? Для каждого из следующих утверждений укажите, является оно верным или неверным:

Ответ ученика

- **≭** Интенсивность транскрипции гена Sox2 в эмбриональных стволовых клетках мыши постоянна во времени
- ✔ Сигнал МСР отражает транскрипцию гена Sox2
- Во всех анализируемых клетках расстояние в пространстве между геном *Sox2* и энхансером SCR одинаково с точностью до десятых долей микрометров
- **★** Необходимое условие транскрипции гена *Sox2* − близость энхансера SCR к этому гену в пространстве ядра
- ✔ Суммарное время, когда ген Sox2 транскрибируется в клетке, различается в разных клетках в популяции
- Интенсивность транскрипции гена *Sox2* не зависит от близости энхансера SCR к этому гену в пространстве пространстве

Время ответа: 19.03.2022 13:40:02

Баллы: **2** из 3

Задание ID28 (Задача № 1281494)

В начале XX века возникла новая отрасль животноводства – разведение пушных зверей в неволе. Для организации зверофермы по разведению американских норок (Neovison vison) животных отлавливали в дикой природе и помещали в заранее подготовленные шеды (клетки для пушных зверей). Среди норок клеточного содержания человек вел искусственный отбор, оставляя для размножения особей, имеющих самые качественные шкурки и дающих хороший приплод. Пары для скрещивания тоже подбирал человек. Вскоре норководы стали сообщать о рождении детенышей необычных окрасов. Причём детеныши одинакового фенотипа зачатую рождались на разных зверофермах, между которыми никогда не было обмена норками. Таких детенышей выращивали с особым вниманием и оставляли для размножения. Впоследствии они стали родоначальниками цветных пород норок. Какие утверждения верно объясняют появление на зверофермах норок с новыми, неизвестными в дикой природе, окрасами. Для каждого из следующих утверждений укажите, является оно верным или неверным:

Ответ ученика

- ж При организации звероферм у норок происходил дрейф генов, увеличивавший частоты рецессивных аллелей, которые отвечают за новые варианты окраски
- В природных популяциях норок присутствовали разнообразные рецессивные аллели, возникшие в результате ✓ естественных мутаций, но частота их встречаемости была очень низкой, поэтому в дикой природе они в основном встречались в гетерозиготе, а в искусственной популяции вышли в гомозиготу
- В природных популяциях мутации, влияющие на окрас шерсти, не возникали из-за действия естественного отбора
- Человек ограничивал свободу скрещивания, что случайным образом увеличивало вероятность рождения рецессивных гомозигот
- **У** Искусственный отбор, проводимый человекам, стал причиной возникновения большого количества новых мутаций
- на разных зверофермах содержание норок в шедах (клетках для содержания пушных зверей) было организовано одинаково, что стало причиной возникновения одинаковых мутаций

Время ответа: 19.03.2022 13:41:59

Баллы: 2.5 из 3

Задание ID29 (Задача № 1281499)

Юный натуралист описывал процесс передачи наследственности в клетках на примере американской норки (Neovison vison), но допустил ошибки. Зная, что у американской норки в диплоидном наборе 30 хромосом, для каждого из следующих утверждений укажите, является оно верным или неверным:

- В интерфазе S количество молекул геномной ДНК не изменяется
- ж В профазе митоза происходит репликация геномной ДНК, в результате чего к концу профазы клетки содержат 60 молекул геномной ДНК
- ✔ В метафазе митоза двухроматидные хромосомы выстраиваются по экватору клетки
- ж Между первым и вторым делением мейоза происходит интерфаза, сопровождающаяся репликацией геномной лнк
- ▼ В интерфазе G2 в клетях американской норки содержится 60 молекул геномной ДНК
- 🗶 Во время мейоза нуклеотидная последовательность каждой из молекул геномной ДНК не изменяется

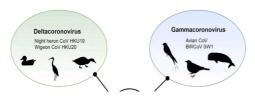
Время ответа: 19.03.2022 13:44:02

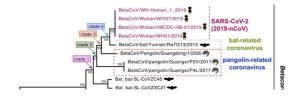
Баллы: **3** из 3

Задание ID30 (Задача № 1281500)

В живой уголок Станции юных натуралистов привезли трех взрослых американских норок (Neovison vison), одного самца и двух самок. Воспитанники станции соорудили вольер и с удовольствием наблюдали за животными. В период гона обе самки забеременели и принесли детенышей. Когда детеныши подросли, их вместе с родителями вернули на звероферму. Юным натуралистам предложили рассчитать, популяция какого состава могла бы сформироваться на Станции юных натуралистов, если бы детеныши остались. Известно, что исходные самки были гомозиготны по доминантному аллелю гена А, находящемуся в X-хромосоме (X^AX^A), а самец был рецессивной гемизиготной (X^aY). Наставники ребят отметили, что никаких мутаций и хромосомных перестроек в популяции не происходит, все особи имеют возможность свободно скрещиваться, у них одинаковая фертильность, а все их потомки выживают и остаются в составе популяции. На основании наблюдений и заданных условий ребята высказали ряд гипотез. Для каждой из них укажите, является она верной или неверной:

Ответ ученика


- ✓ В первом поколении все детеныши женского пола будут иметь генотип X^AX^a
- ✓ В Y-хромосоме нет гена А
- ✔ В популяции на момент равновесия частота встречаемости аллеля а составит 20%
- 🗶 Со временем в популяции установится равновесие, которое будет сохраняться в последующих поколениях
- 🛩 В популяции никогда не будет самок с генотипом Х^аХ^а, т.к. изначально этот аллель был только у самца
- 🗶 Среди самок в популяции на момент равновесия будет 32% гетерозигот по гену А


Время ответа: 19.03.2022 13:47:49

Баллы: **1.5** из 3

Задание ID32 (Задача № 1281508)

Вирус SARS-CoV-2 является причиной продолжающейся глобальной вспышки коронавирусного заболевания COVID-19. Другие вирусы той же филогенетической группы были ответственны за предыдущие региональные вспышки, включая SARS и MERS. SARS-CoV-2 имеет зоонозное происхождение, аналогичное вирусамвозбудителям этих предыдущих вспышек. Повторяющееся внедрение вирусов животных в человеческую популяцию, приводящее к вспышкам заболеваний, предполагает, что подобные эпидемии в будущем неизбежны. Таким образом, изучение происхождения и продолжающейся эволюции SARS-CoV-2 дает важную информацию для подготовки к будущим вспышкам и их предотвращению. Ниже представлены две иллюстрации из разных источников об эволюции SARS-CoV-2. На первой иллюстрации изображены четыре основных рода семейства коронавирусов (Coronaviridae), силуэтами обозначены животные – хозяева вируса, а розовым шрифтом – вирусы человека. На второй – более подробные данные для рода Веtacoronavirus, к которому относится и SARS-CoV-2. В ней обратите внимание на длину ветвей, являющейся графическим отображением дистанций между последовательностями: чем выше дистанция, тем больше различий накоплено между последовательностями, что может говорить как о быстром накоплении изменений по действием отбора, так и о постепенным накоплении в течении большого промежутка времени. Так или иначе, дистанцию можно рассматривать в качестве меры родства между изучаемыми группами.

Проанализируйте представленные схемы и для каждого из следующих утверждений укажите, является оно верным или неверным:

Ответ ученика

- ✔ Bupyc SARS-CoV является более близким родственником вирусу SARS-CoV-2, чем вирус MERS-CoV
- Коронавирусы летучих мышей (bat-related coronaviruses) и панголинов (pangolin-related coronaviruses) наиболее родственны SARS-CoV-2
- ✔ Для всех вирусов семейства Coronaviridae хозяевами являются теплокровные животные
- ✔ Коронавирусы могут относительно легко менять хозяев в ходе эволюции
- SARS-CoV-2 первый открытый коронавирус человека, чьим ближайшим известным родственником является коронавирус, поражающий летучих мышей

Время ответа: 19.03.2022 13:52:31

Баллы: **3** из 3

Задание ID35 (Задача Nº 1281516)

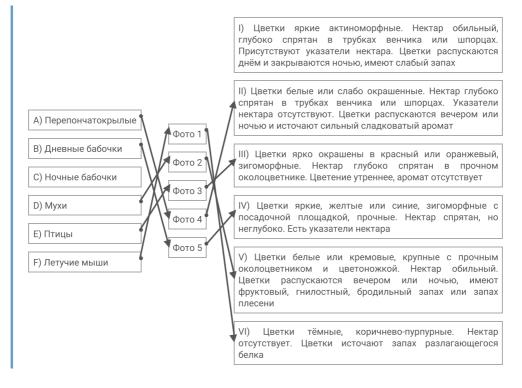
В ходе эволюции у многих цветковых растений сформировались приспособления для взаимодействия с определённым типом опылителя.

Ниже приведены фотографии различных растений:

После данной формулировки задания приведены три столбца элементов для сопоставления:

В левом столбце приведен список опылителей (список избыточен - в нем есть лишние типы опылителей).

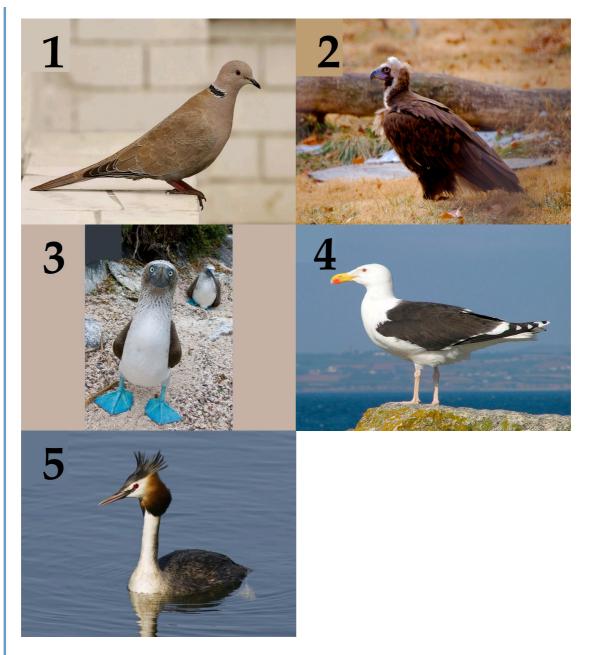
В среднем столбце указаны номера фотографий (сами фото приведены выше).


В правом столбце приведен список приспособлений цветка (список избыточен – в нем есть лишние характеристики).

Рассмотрите фотографии цветков или соцветий и соотнесите их с основным характерным для них типом опылителя и приспособлениями для привлечения этого опылителя.

Каждый элемент из среднего столбца можно соединить стрелкой <u>только с одним</u> элементом в левом столбце и/или в правом столбце. Каждая стрелка <u>должна быть уникальной</u>, т.е. провести две стрелки от двух элементов среднего столбца к одному и тому же элементу левого (или правого) столбца нельзя!

Для того, чтобы провести стрелку перетяните мышкой элемент к которому вы проводите стрелку поверх элемента от которого должна идти стрелка и отпустите. Чтобы отменить стрелку между элементами повторите их перемещение.


Ответ ученика

Время ответа: 19.03.2022 14:06:17

Баллы: **3** из 5

Задание ID37 (Задача № 1281523)

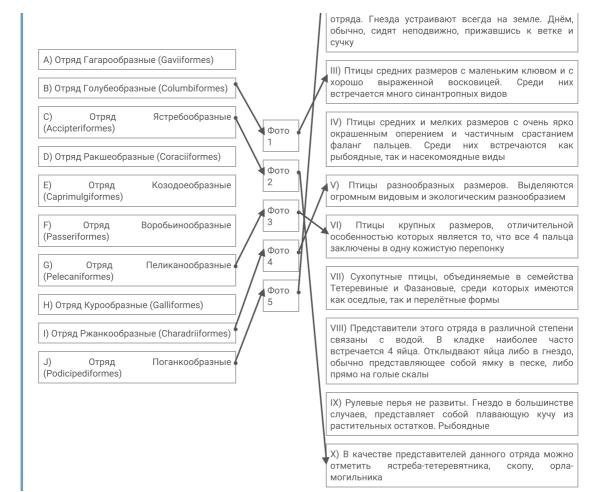
После данной формулировки задания приведены три столбца элементов для сопоставления:

В левом столбце приведен список названий систематических групп (список избыточен – в нем есть лишние названия).

В среднем столбце указаны номера фотографий (сами фото приведены выше).

В правом столбце приведен список характеристик отрядов (список избыточен – в нем есть лишние характеристики).

Используя данные о морфологии, экологии и систематики, соотнесите изображение с названием отряда и подходящей для него характеристикой.

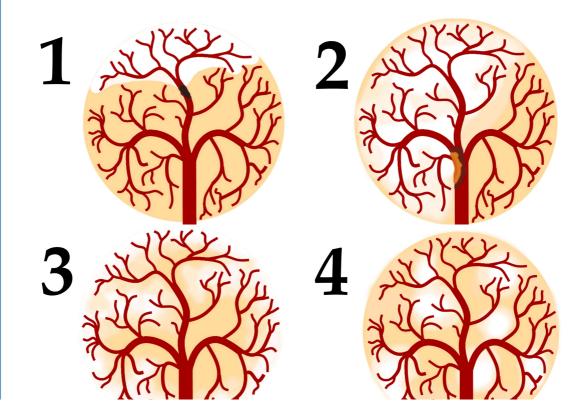

Каждый элемент из среднего столбца можно соединить стрелкой <u>только с одним</u> элементом в левом столбце и/или в правом столбце. Каждая стрелка <u>должна быть уникальной</u>, т.е. провести две стрелки от двух элементов среднего столбца к одному и тому же элементу левого (или правого) столбца нельзя!

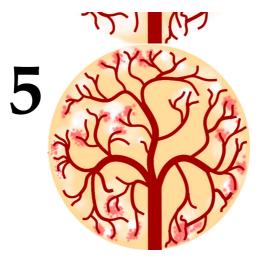
Для того, чтобы провести стрелку перетяните мышкой элемент к которому вы проводите стрелку поверх элемента от которого должна идти стрелка и отпустите. Чтобы отменить стрелку между элементами повторите их перемещение.

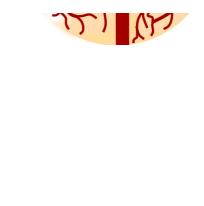
Ответ ученика

() Околоводные, хорошо ныряющие, исключительно рыбоядные птицы. Гнездятся в северных широтах

II) Птицы размером с дрозда с ночной активностью. На территории России встречается только 2 вида из этого




Время ответа: 19.03.2022 13:58:44


Баллы: **4** из 5

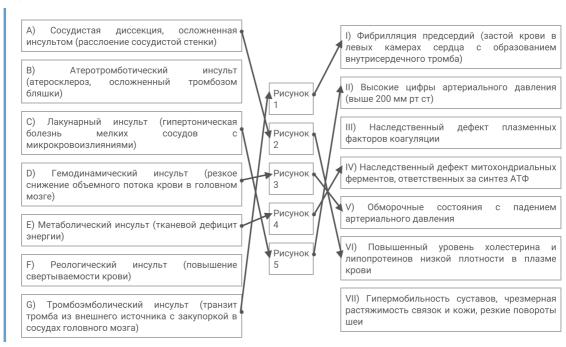
Задание ID39 (Задача № 1281529)

По данным ВОЗ, инсульт (острое нарушение мозгового кровообращения, приводящее к некрозу нервной ткани) — вторая по частоте причина смерти после ишемической болезни сердца. Первостепенной задачей врача является скорейшее установление причины инсульта для определения тактики лечения. На рисунках ниже изображена модель кровообращения ткани головного мозга:

После данной формулировки задания приведены три столбца элементов для сопоставления:

В левом столбце приведен список типов ишемического инсульта (список избыточен - в нем есть лишние элементы).

В среднем столбце указаны номера рисунков (сами рисунки приведены выше).


В правом столбце приведен список основных факторов риска (список избыточен - в нем есть лишние элементы).

Установите тип ишемического инсульта и основной фактор риска его развития по картине расположения очагов ишемии, их контуру и размеру, а также по состоянию кровеносного русла.

Каждый элемент из среднего столбца можно соединить стрелкой <u>только с одним</u> элементом в левом столбце и/или в правом столбце. Каждая стрелка <u>должна быть уникальной</u>, т.е. провести две стрелки от двух элементов среднего столбца к одному и тому же элементу левого (или правого) столбца нельзя!

Для того, чтобы провести стрелку перетяните мышкой элемент к которому вы проводите стрелку поверх элемента от которого должна идти стрелка и отпустите. Чтобы отменить стрелку между элементами повторите их перемещение.

Ответ ученика

Время ответа: 19.03.2022 14:11:43

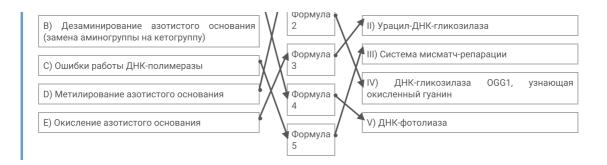
Баллы: 4.5 из 5

На рисунках показаны повреждения молекул ДНК (в каждом случае изображена только поврежденная часть молекулы), которые возникают под действием различных факторов физической и химической природы:

После данной формулировки задания приведены три столбца элементов для сопоставления:

В левом столбце приведен список причин появления повреждений.

В среднем столбце указаны номера формул (сами формулы приведены выше).


В правом столбце приведен список ферментов или путей репарации.

Сопоставьте каждое повреждение с основной причиной его возникновения (список A-E) и ферментом (или путем репарации), ответственным за исправление этого повреждения (список I-V).

Каждый элемент из среднего столбца можно соединить стрелкой <u>только с одним</u> элементом в левом столбце и/или в правом столбце. Каждая стрелка <u>должна быть уникальной</u>, т.е. провести две стрелки от двух элементов среднего столбца к одному и тому же элементу левого (или правого) столбца нельзя!

Для того, чтобы провести стрелку перетяните мышкой элемент к которому вы проводите стрелку поверх элемента от которого должна идти стрелка и отпустите. Чтобы отменить стрелку между элементами повторите их перемещение.

Ответ ученика

Время ответа: 19.03.2022 14:14:11

Баллы: 4 из 5

Задание ID43 (Задача № 1281541)

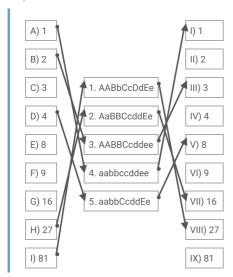
Ниже приведены различные генотипы растений, все гены расположены на разных хромосомах:

- 1. AABbCcDdEe
- 2. AaBBCcddEe
- 3. AABBCcddee
- 4. aabbccddee
- 5. aabbCcddEe

После данной формулировки задания приведены три столбца элементов для сопоставления:

В левом столбце приведен список количества типов гамет, которое способно образовывать растение (список избыточен – в нем есть лишние значения).

В среднем столбце указаны генотипы растений.

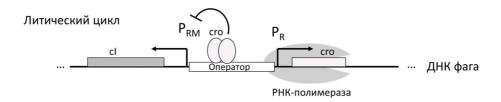

В правом столбце приведен список количества генотипических классов, которые можно получить при самоопылении растения (список избыточен – в нем есть лишние значения).

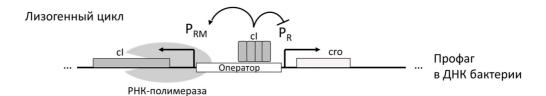
Соотнесите генотип растения, количество типов гамет, которое данное растение способно образовывать, и количество генотипических классов, которые можно получить при самоопылении этого растения.

Каждый элемент из среднего столбца можно соединить стрелкой <u>только с одним</u> элементом в левом столбце и/или в правом столбце. Каждая стрелка <u>должна быть уникальной</u>, т.е. провести две стрелки от двух элементов среднего столбца к одному и тому же элементу левого (или правого) столбца нельзя!

Для того, чтобы провести стрелку перетяните мышкой элемент к которому вы проводите стрелку поверх элемента от которого должна идти стрелка и отпустите. Чтобы отменить стрелку между элементами повторите их перемещение.

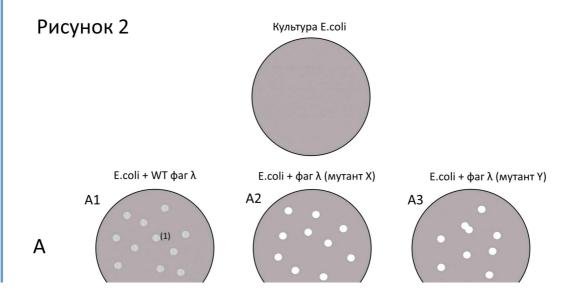
Ответ ученика

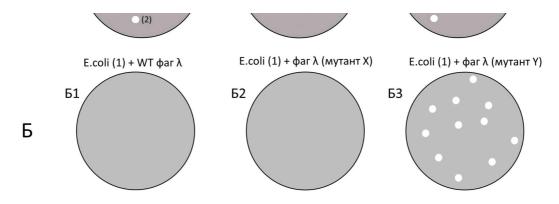



Время ответа: 19.03.2022 14:19:20

Задание ID52 (Задача № 1281552)

Для бактериофага лямбда характерно два типа жизненных циклов – литический, когда фаг активно реплицируется и разрушает клетки кишечной палочки (Escherichia coli), или лизогенный, когда геном фага встраивается в молекулу ДНК клетки бактерии в уникальный локус генома с помощью процесса, называемого сайт-специфической рекомбинацией. На рисунке 1 показана упрощенная схема регуляции экспрессии двух генов бактериофага – cl и cro. В случае литического цикла с промотора P_R экспрессируется ген cro, а также другие гены, необходимые для протекания литического цикла. Белок сго блокирует транскрипцию с промотора P_{RM} (стрелка с тупым концом), связываясь с последовательностью-оператором. В случае лизогенного цикла фаговая ДНК существует в виде профага, встроенного в ДНК бактериальной клетки. При этом активен промотор P_{RM} , с которого экспрессируется ген cl. Белок cl блокирует промотор P_R , также связываясь с оператором. Белок cl дополнительно активирует промотор P_{RM} (стрелка с острым концом), привлекая к нему РНК-полимеразу (в отличие от промотора P_R промотор P_{RM} является слабым и требует дополнительной активации).


Рисунок 1



При заражении фагом лямбда клеток *E. coli*, равномерно покрывающих поверхность чашки Петри, в слое бактерий появляются так называемые бляшки – участки, где рост бактерий нарушен. Обычно при заражении культуры *E. coli* фагом дикого типа (WT) образуются в основном мутные бляшки (тип 1 на рисунке 2A, чашка A1), и меньшее количество полностью прозрачных бляшек (тип 2 на рисунке 2A, чашка A1). Если из бактерий в мутных бляшках (тип 1) вырастить культуру, а потом добавить к такой культуре фаг дикого типа, то заметных изменений не наблюдается (рисунок 2Б, чашка Б1).

Ученые обнаружили два мутанта фага лямбда – X и Y, которые образуют только прозрачные колонии при заражении клеток *E. coli* (рисунок 2A, чашки A2 и A3). Ученым удалось установить, что в этих штаммах содержится по одной точечной мутации (эти эксперименты здесь не описаны). При заражении бактерий, выращенных из бляшек типа 1 (полученных при заражении фагом дикого типа), фагом X заметных изменений не наблюдается (рисунок 2Б, чашка Б2). Однако если в таком эксперименте использовать мутантный фаг Y, то на чашке появляются прозрачные бляшки (рисунок 2Б, чашка Б3).

Ответьте на следующие подвопросы:

- 1) Какой тип жизненного цикла преобладает у фагов в мутных бляшках (тип 1)?
- 2) Какой тип жизненного цикла преобладает у фагов в прозрачных бляшках (тип 2)?
- 3) Почему фаги дикого типа (WT) не дают бляшек на чашке с бактериями, выращенными из мутных бляшек (тип 1)?
- 4) Какими являются мутации в штаммах X и Y доминантными или рецессивными? Объясните ваш ответ.
- 5) В какой (каких) последовательностях могла произойти мутация у штамма X? Считайте, что мутация делает последовательность, в которой она возникла, полностью нефункциональной. Объясните ваш ответ.
- 6) В какой (каких) последовательностях могла произойти мутация у штамма Y? Считайте, что мутация делает последовательность, в которой она возникла, полностью нефункциональной. Объясните ваш ответ.

При внесении ответа в поле ниже, пожалуйста, сохраняйте нумерацию подвопросов на которые вы даете ответы!

Ответ ученика

- 1 лизогенный, т.к. из бактерий, принадлежащих бляшке можно вырастить культуру, сл. клетки там не разрушены, тогда как литический цикл фага должен был бы разрушать бактерий.
- 2 литический, т.к. прозрачность бляшки намекает на то, что клеток бактерий там нет, хотя прямым текстом в условии этого не сказано.
- 3 поскольку в "мутных" колониях у фага преобладает лизогенны цикл, сл. там ДНК фага встоилась в геном. Сл. там происходит выработка белка сl, который блокирует промотор для белка сго. При заражении его фагом дикого типа, произойдет выработка некоторого количества сго (его промотор более эффективный), который будет блокировать промотор cl, а выработанные белки cl заблокируют промотор на сго у попавшего внутрь бактерии фага дикого типа. То есть, два фага, старый и новый, друг друга нейтрализуют.
- 4 Мутация X рецессивна по отношению к дикому типу, т.к. при обработке мутантами X "мутной" кололнии бляшек не проявляется. Сл. дикий тип доминирует над мутацией.
- Мутация Y доминантна по отношению к дикому типу, т.к. при обработке мутантами Y "мутной" колонии бляшек не проявляется. Сл. дикий тип рецессивен в данном случае. 5 -
- 6 Мутация Y могла произойти во всем, что связано с геном cl (промотор или смысловая последовательность, например), что сделало бы невозможным появление лизогенного цикла, соответственно, только белые пятна в любом случае, т.к. будет повышенная выработка cro.

Время ответа: 19.03.2022 14:48:32

Баллы: **6** из 10

Задание ID54 (Задача № 1281554)

Цвет шерсти у млекопитающих связан с работой фермента тирозиназы, который катализирует одну из реакций, необходимую для превращения тирозина в пигмент меланин. Тирозиназа накапливается в особых клеточных везикулах, меланосомах, где и происходит синтез пигмента. В свою очередь меланосомы образуются в клетках меланобластах, которые в процессе эмбрионального развития мигрируют из нервного гребня в эпидермис кожи, где превращаются в меланоциты – клетки, определяющие цвет кожи и шерсти.

У американских норок (Neovison vison) описан ген Н, продукт которого играет ключевую роль в формировании меланобластов и миграции их из нервного гребня. Ген имеет два аллеля. Аллель дикого типа Н определяет нормальное развитие меланобластов, и гомозиготы по данному аллею имеют коричневую шерсть (фенотип дикого типа). У обладателей мутантного аллеля h нарушены биогенез и миграция меланобластов, в результате чего шерсть остается белой. Данный аллель кодоминирует по отношению к аллелю дикого типа. Гетерозиготы

имеют пегий окрас (мелкие белые пятна на коричневом фоне). Кроме того, ген обладает плейотропным эффектом. Гомозиготы по аллелю h глухие, гетерозиготы и гомозиготы по аллелю H имеют нормальный слух.

Продукт другого гена M регулирует образование и перемещение меланосом в клетке. Доминантный аллель данного гена определяет фенотип дикого типа. Продукт рецессивного аллеля m работает менее эффективно, в результате чего образуется меньше меланосом и животные имеют светло-коричневый мех.

На звероферме разводят две чистые линии норок, фенотип которых связан с действием описанных генов. Норки линии Мойл светло-коричневые. Норки линии Хедлунд белые и глухие.

Ответьте на следующие подвопросы:

- 1) Какой генотип имеют норки линий Мойл и Хедлунд, если каждая из них несет мутацию только в одном из описанных генов?
- 2) Какие генотип и фенотип по признакам окраса шерсти и наличия слуха будут иметь гибриды F1 от скрещивания данных чистых линий?
- 3) В каком соотношении в F2 можно ожидать рождение глухих детенышей и детенышей с нормальным слухом?
- 4) Сколько фенотипических классов по признаку окраса шерсти можно ожидать в F2? Перечислите все возможные фенотипы и соответствующие им генотипы.
- 5) Какое расщепление можно ожидать в F2 одновременно по двум признакам наличие слуха и цвет шерсти?

При внесении ответа в поле ниже, пожалуйста, сохраняйте нумерацию подвопросов на которые вы даете ответы!

Ответ ученика

- 1 Мойли (HHmm) Хедлунд (hhMM)
- 2 Они будут единообразны согласно первому закону менделя. Генотип HhMm. Фенотип Пегий окрас шерсти и нормальный слух.
- 3 Поскольху на слух влияет только ген H, можно проверить скрещивание только по нему. При скрещивании двух гетерозиготв будет расщепление 3 к 1(нормальный слух к глухим соответственно). Возможеные генотипы:

HHmm - 1/16 - нормальный слух и светлокоричневый мех

hhMM - 1/16 - глухие и белые

ННММ - 1/16 - дикий тип

hhmm - 1/16 - глухие и белые

HhMm - 4\16 - нормальный слух и пегие

HHMm - 2/16 - дикий тип

HhMM - 2/16 - пегие и нормальный слух

hhMm - 2/16 - глухие и белые

Hhmm - 2\16 - пегие с светлыми пятнами и нормальным слухом

Время ответа: 19.03.2022 15:02:09

Баллы: **9** из 10