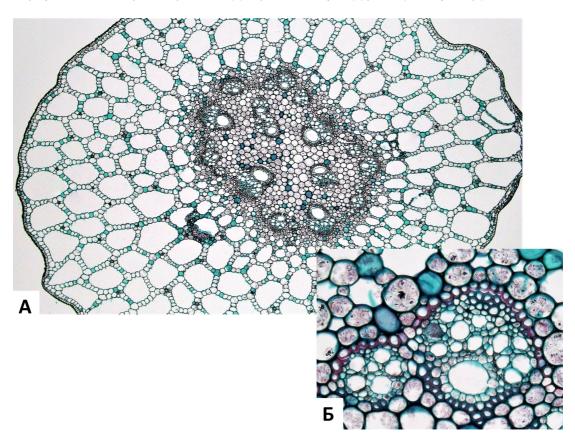
Биология-11


Шифр 42443821 **Предмет** Биология

Класс 11

ID профиля 837822

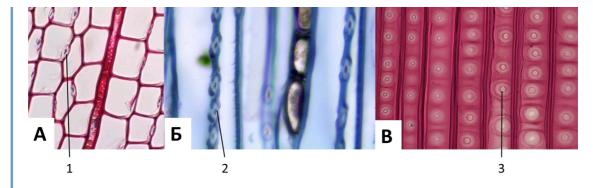
Задание ID2 (Задача № 1281310)

На рисунке показан поперечный срез стебля (A) и проводящего пучка (Б) рдеста (Potamogeton sp.).

Основываясь на анатомических особенностях растения, укажите для каждого из следующих утверждений, является оно верным или неверным:

Ответ ученика

- 🗙 Аэренхима состоит из клеток с крупными выростами
- 🗶 В аэренхиме располагаются клетки механической ткани астросклереиды
- 🗶 Проводящие пучки концентрические амфивазальные
- 🗶 В проводящих пучках редуцирована флоэма
- ✓ Данное растение гидрофит
- ✓ Для растения характерна атактостела


Время ответа: 19.03.2022 10:04:26

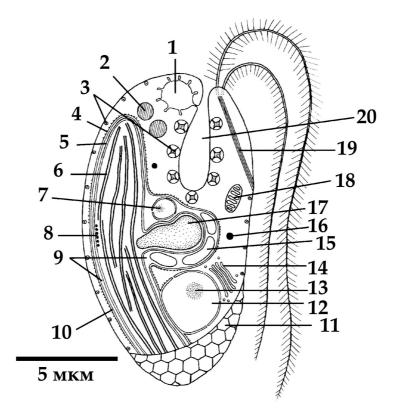
Баллы: **3** из 3

Задание ID3 (Задача № 1281314)

На фотографиях представлены участки срезов проводящей ткани высшего растения (Embryophyta).

Для каждого из следующих утверждений укажите, является оно верным или неверным:

Ответ ученика


- ✔ На фотографиях показаны трахеиды, проводящая ткань ксилема
- 🗶 Цифрой 3 обозначена простая перфорационная пластинка
- Раствор по проводящим элементам, показанным на фотографиях, может передвигаться как от корней к листьям, так и в обратном направлении
- ✓ Цифрами 1-2 обозначены окаймленные поры, цифрой 3 простая пора
- 🗶 Данные проводящие элементы НЕ имеют вторичной клеточной стенки
- **ж** На рисунке показаны наиболее совершенные проводящие элементы цветковых растений (*Magnoliophyta*), по которым вода перемещается с наибольшей скоростью

Время ответа: 19.03.2022 10:05:34

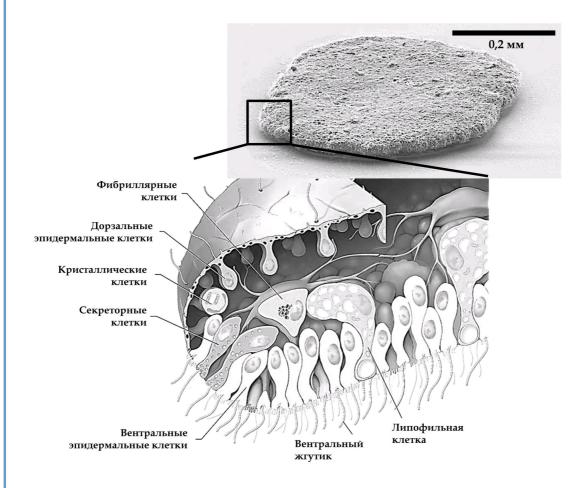
Баллы: 2.5 из 3

Задание ID7 (Задача № 1281342)

Перед вами схема строения клетки некого эукариотического организма.

Для каждого из следующих утверждений о данном организме укажите, является оно верным или неверным:

- 🗶 Данный организм способен питаться только автотрофно
- ✓ Данный организм принадлежит к супергруппе SAR
- ✓ Предок данного организма получил свой хлоропласт в результате вторичного эндосимбиогенеза


- ✓ Данный организм обладает изоконтным жгутиковым аппаратом
- Органелла под цифрой 17 содержит запас питательного вещества

Время ответа: 19.03.2022 11:47:32

Баллы: **1.5** из 3

Задание ID8 (Задача № 1281346)

Этот странный небольшой организм был впервые обнаружен в конце XIX века на стенках морского аквариума, и лишь недавно удалось найти свидетельства его присутствия в дикой природе.

Для каждого из следующих утверждений о данном организме укажите, является оно верным или неверным:

Ответ ученика

- 🗶 Фибриллярные клетки имеют мезодермальное происхождение
- Данный организм ведёт пелагический образ жизни
- 🗸 Данный организм относится к типу Пластинчатые (Placozoa), включающему всего несколько видов
- ферментов, а липофильные клетки, расположенные на вентральной стороне, выделяют нейропептиды, регулирующие поведение организма
- 🗸 Данный организм перемещается, в основном за счёт работы таких белков как динеин и тубулин

Время ответа: 19.03.2022 11:49:09

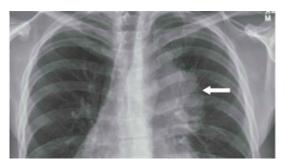
Баллы: **1.5** из 3

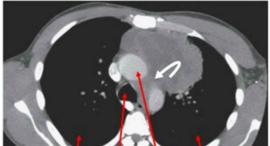
Задание ID9 (Задача № 1281349)

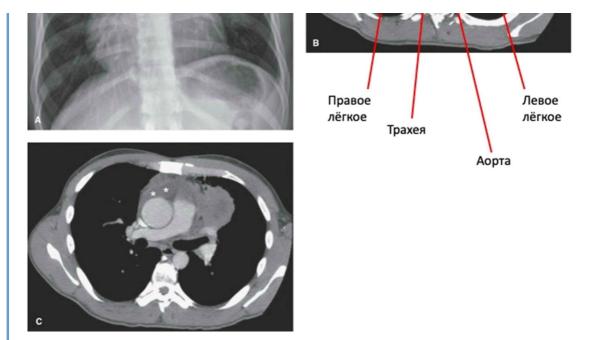
«ROV Global Explorer» было обнаружено необычное животное, длиной до 9 см, издалека напоминающее кальмара и названное исследователями «squidworm» («кальмарочервь»), или по-научному - Teuthidodrilus samae.

Для каждого из следующих утверждений о данном организме укажите, является оно верным или неверным:

Ответ ученика


- ✓ Данный организм имеет планктонную личинку трохофору
- 🗶 Данный организм можно отнести к животным, обладающим вторичноротостью
- 🗶 Сходство данного организма с кальмаром является результатом близкого эволюционного родства
- 🗶 Данный организм принадлежит к группе (подклассу) малощетинковые кольчатые черви» (Oligochaeta)
- 🗶 У данного организма редуцированы пальпы и перистомиум
- ✓ Данный организм имеет нервную систему в виде брюшной нервной цепочки


Время ответа: 19.03.2022 10:09:54


Баллы: **3** из 3

Задание ID14 (Задача № 1281453)

На приём к врачу обратился мужчина с жалобами на прогрессирующую в течение дня мышечную утомляемость. По результатам рентгенографии органов грудной клетки (A) выявлено новообразование средостения (пространства грудной клетки между двумя плевральными полостями) с неровными контурами. По данным компьютерной томографии (B, C) заподозрена злокачественная опухоль тимуса — инвазивная тимома; отмечено врастание в перикард (с наличием жидкости в перикарде) и клетчатку средостения. Известно, что у около четверти пациентов с тимомой диагностируют аутоиммунное заболевание миастения гравис, которое развивается вследствие избыточной продукции Т-лимфоцитами антител к эпитопам клеток эпителиальной тимомы, имеющим схожую структуру с субъединицами ацетилхолинового рецептора.

Для каждого из следующих утверждений укажите, является оно верным или неверным:

Ответ ученика

- при сдавливании опухолью верхней полой вены будет отмечено набухание и расширение вен на животе и ногох
- ✓ При лечении глюкокортикостероидами мышечная утомляемость станет менее выраженной
- Для тимомы характерен местно-распространенный процесс с прорастанием в органы средостения, легкие и плевру
- После умеренной физической нагрузки у пациента можно отметить птоз (непроизвольное опущение верхнего века) и снижение силы рукопожатия
- ✓ При условии хирургического удаления тимомы можно ожидать исчезновение симптомов миастении
- Массивное накопление жидкости в перикарде проявляется выраженным повышением артериального давления

Время ответа: 19.03.2022 11:51:32

Баллы: **2.5** из 3

Задание ID15 (Задача № 1281457)

Газообмен между альвеолами и легочными капиллярами приводит к повышению концентрации кислорода и снижению концентрации углекислого газа в малом круге кровообращения. Далее кровь поступает в магистральные артерии большого круга, где исследователю возможно осуществить измерение газового состава плазмы крови (а точнее, парциальный давлений газов — pO₂, pCO₂). Более низкие значения парциального давления свидетельствуют о меньшем объеме растворенного соответствующего газа.

Представьте, что из кровотока одномоментно были элиминированы все эритроциты, при этом легкие функционируют нормально, и сразу после этого произведено измерение газового состава крови.

Для каждого из следующих утверждений укажите, является оно верным или неверным:

- ▶ В дальнейшем, клетки организма испытают тяжелую гипоксию вследствие недостаточности растворенного в крови кислорода
- ✓ Артериальное рО₂ не изменится
- 🗶 Общее содержание кислорода в артериальной крови не изменится
- ✓ Артериальное рСО₂ не изменится
- Клетки организма испытают тяжелую гипоксию вследствие резкого, одномоментного с элиминацией эритроцитов, падения pO₂ в плазме
- 🗶 Общее содержание углекислого газа в артериальной крови не изменится

Время ответа: 19.03.2022 10:12:59

Баллы: **3** из 3

Задание ID19 (Задача № 1281467)

Некоторым людям кажется, что биохимия — очень сложная наука, потому что ее изучение требует запоминания множества соединений. В частности, согласно *E. coli* Metabolome Database метаболом кишечной палочки (*Escherichia coli*) содержит как минимум 3755 малых молекул. Однако подобная позиция совершенно не верна! Дело в том, что многие биомолекулы синтезируются путем объединения относительно небольшого количества типовых звеньев, словно живые организмы играют в химический конструктор. На практике знание основных блоков метаболизма, а также способов их соединения позволяет достаточно уверенно ориентироваться в многообразии биологических веществ. На рисунке представлена одна из молекул, которая в больших количествах присутствует в цитоплазме микобактерий (*Mycobacterium*), в том числе — Палочки Коха (*Mycobacterium tuberculosis*), опаснейшего возбудителя туберкулеза. Мы выделили четыре ее фрагмента черным цветом (учтите, что некоторые атомы и связи остались обозначены серым). Обратите внимание, что фрагменты 2 и 3 пересекаются.

Внимательно рассмотрите рисунок, после чего выберите, какие утверждения являются верными, а какие – неверными:

Ответ ученика

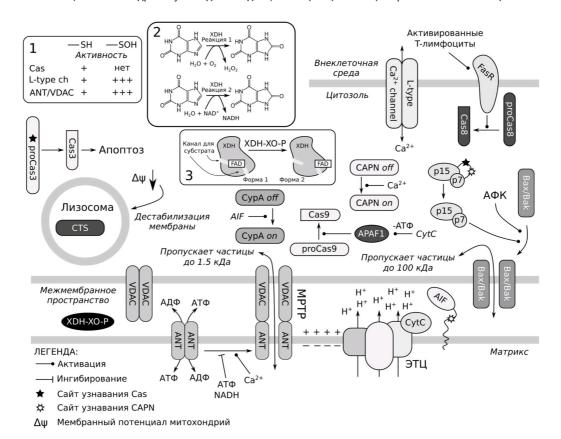
- 🗶 В представленном соединении присутствует N-гликозидная связь с аминокислотой
- Углеродный фрагмент 1 может быть получен в ходе окисления пирувата
- 🗶 Представленное соединение включает в свой состав остаток галактозы
- ✓ Фрагмент 2 может быть обнаружен в белках, синтезированных на рибосомах
- 🗶 В представленном соединении присутствует α-О-гликозидная связь между двумя моносахаридами
- Фрагмент 4 может быть обнаружен в субстратах некоторых киназ, участвующих во внутриклеточном сигналинге

Время ответа: 19.03.2022 10:15:23

Баллы: **3** из 3

Задание ID20 (Задача № 1281470)

Одним из наиболее изучаемых явлений в современной науке является регулируемая клеточная смерть, поскольку она лежит в основе многих физиологических и патологических процессов. На рисунке изображены упрощенные события, которые связаны с тем, как клетки инициируют свою гибель. Обратите внимание на то, что далеко не все последовательные события соединены стрелками на схеме - мы предлагаем вам разобраться в их связи самостоятельно.


В рамке 1 вы можете видеть, как активность некоторых белков зависит от состояния остатков цистеина в их составе.

Рамка 2 изображает две реакции, которые способен катализировать цитозольный фермент XDH в одной из своих форм (мы умышленно не указываем соответствие форма/реакция).

Рамка 3 иллюстрирует конверсию формы 1 XDH в форму 2 под действием протеазы XDH-XO-Р, в норме локализованной в митохондриях.

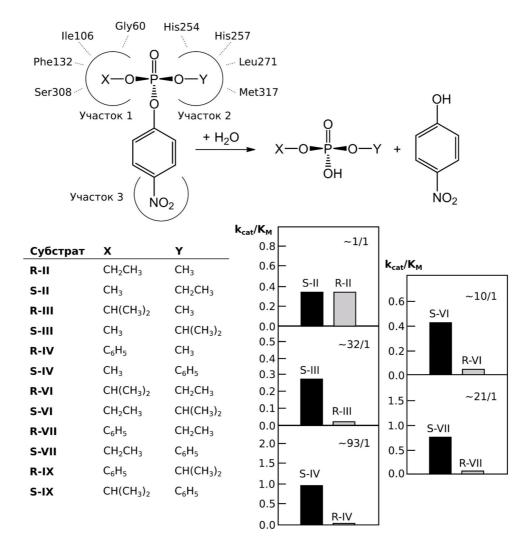
Cas – ферменты каспазы (протеазы); proCas – их неактивные формы; CTS – ферменты катепсины (мощные неспецифические протеазы); CAPN – протеазы кальпаины; CytC – цитохром с; MPTP – комплекс белков митохондриальной поры; CypA – белок-активатор эндонуклеаз; ЭТЦ – электрон-транспортная цепь; АФК – активные формы кислорода; (-ATФ) над реакцией обозначает расход этого соединения в ходе процесса; считайте, что 1 кДа численно равен 1000 г/моль. Названия других белков мы умышленно не расшифровываем.

В тех случаях, когда процесс контролируют несколько факторов, они могут действовать независимо, а при совместном действии их эффекты суммируются. При решении задания не забывайте об осмотических эффектах, а также о том, что митохондрии служат одним из депо, поглощающим кальций при его повышении в цитозоле!

Для каждого из утверждений выберите, является оно верным или неверным:

Ответ ученика

- ▶ В случае умеренного повышения АФК исключительно в матриксе, добавление ингибиторов катепсинов приведет к тому, что доля клеток, претерпевших смерть, снизится
- При увеличении концентрации Ca²⁺ в митохондрии, усилится ток катионов в матрикс, что в конечном итоге ✓ приведет к разрушению митохондриальной мембраны и к выходу цитохрома с в цитозоль даже при ингибировании Bax/Bak
- В тех случаях, когда энергетический метаболизм клетки существенно нарушен, эндогенные стимулы вызывают Cas-зависимый апоптоз
- ✔ Реакция 2, катализируемая XDH, является частью катаболизма нуклеотидов
- Окислители, которые полностью реагируют с компонентами клеточной мембраны и почти не проникают в цитозоль, будут вызывать Cas3-зависимую клеточную смерть


Время ответа: 19.03.2022 11:42:41

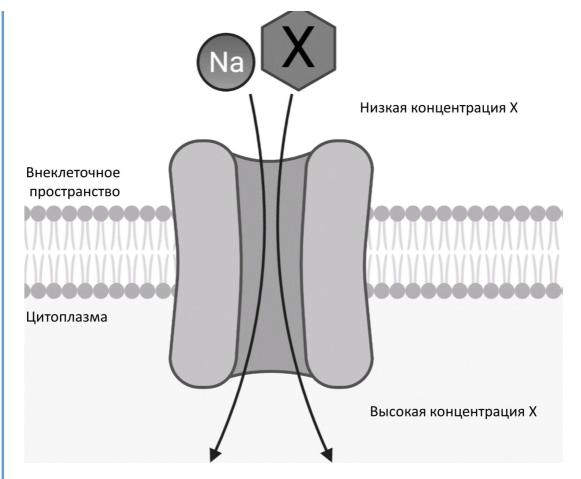
Баллы: **2** из 3

Задание ID21 (Задача № 1281473)

росфорорганических первных идах. Оощую схему реакции вы можете видеть в верхней части рисунка.

Кристаллографические работы показали, что фермент связывает свои субстраты при помощи трех участков в активном центре. В 2001 году Chen-Goodspeed с коллегами решили выяснить, какими факторами регулируется субстратная специфичность РТЕ. Для этого они воспользовались библиотекой фосфорорганических соединений, представленной в нижней левой части рисунка. Каждое из веществ добавляли к ферменту, после чего измеряли кинетические параметры реакции. В качестве критерия эффективности фермента использовали величину k_{cat}/K_{M} . Результаты некоторых измерений вы можете обнаружить в правой нижней части рисунка. Мы также указали примерное соотношение эффективностей катализа для каждой пары соединений (коэффициент селективности S/R, в правом верхнем углу окошка).

Внимательно рассмотрите рисунок, после чего для каждого из утверждений выберите, является оно верным или неверным:


Ответ ученика

- 🗸 Мутация Gly60Ala приведет к тому, что для пары S-II/R-II коэффициент селективности станет выше 1/1
- Замены Ile106Ala/His257Туг приведут к тому, что для пары S-III/R-III коэффициент селективности станет ниже 32/1
- Фермент с заменами Ile106Ala/Phe132Ala будет иметь более низкий коэффициент селективности в отношении пары S-VI/R-VI, нежели фермент с заменами Ile106Ala/Phe132Ala/His257Trp
- Фермент с заменами Ile106Gly/Phe132Gly/Ser308Gly будет иметь более низкий коэффициент селективности в отношении пары S-VII/R-VII, нежели фермент с заменами Ile106Gly/Phe132Gly/His257Tyr/Ser308Gly
- 🗸 Для фермента дикого типа коэффициент селективности в отношении пары S-IX/R-IX будет ниже 93/1
- В отношении пары S-IX/R-IX коэффициент селективности будет уменьшаться в ряду ферментов с мутациями $Ile106Gly \rightarrow Gly60Ala \rightarrow Ile106Gly/Phe132Gly/His257Tyr/Ser308Gly$

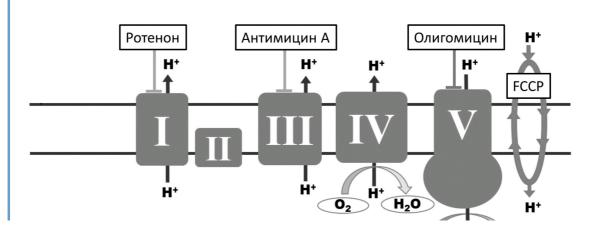
Время ответа: 19.03.2022 10:27:43

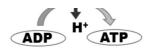
Баллы: **2** из 3

Задание ID25 (Задача № 1281485)

Проанализируйте представленную схему и для каждого из следующих утверждений укажите, является оно верным или неверным:

Ответ ученика


- 🗸 Тип транспортера, изображённый на схеме, может функционировать в кишечнике
- Транспорт ионов натрия происходит по градиенту концентрации (из области с большей концентрацией в область с меньшей)
- 🗶 Вещество X транспортируется в клетку по механизму облегчённой диффузии
- 🗶 Вещество X может являться углекислым газом
- **x** Если заблокировать работу Na^+/K^+ -AT Φ азы, вещество X будет транспортироваться в клетку более активно
- ✓ Ингибирование такого типа транспортера, как приведенный на схеме, может привести к увеличению уровня глюкозы в моче


Время ответа: 19.03.2022 10:28:21

Баллы: **3** из 3

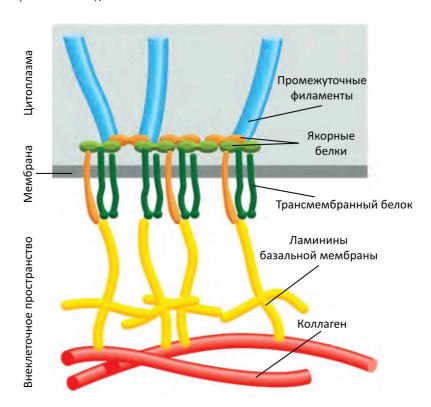
Задание ID26 (Задача № 1281490)

Дыхательная цепь митохондрий – один из основных путей синтеза АТФ в клетке. Использование различных модуляторов дыхательной цепи (см. рисунок ниже) позволяет рассчитать различные метаболические параметры.

Ротенон, антимицин A и олигомицин ингибируют соответственно комплексы I, III и V. FCCP является протонофором – он позволяет протонам свободно проникать через митохондриальную мембрану.

Изучите представленную схему и подумайте, как повлияет на работу дыхательной цепи добавление в клетку каждого из веществ. Для каждого из следующих утверждений укажите, является оно верным или неверным:

Ответ ученика


- Добавление комбинации ротенона и антимицина A практически полностью подавляет работу дыхательной непи
- ✔ Добавление олигомицина повысит потребление клеткой кислорода
- 🗶 Максимальное потребление кислорода достигается добавлением ротенона
- ✔ Добавление FCCP ингибирует продукцию АТФ в дыхательной цепи
- ✓ Добавление ротенона способствует накоплению NADH
- Чтобы оценить, какой процент потребления кислорода клеткой связан с продукцией АТФ, необходимо добавить олигомицин

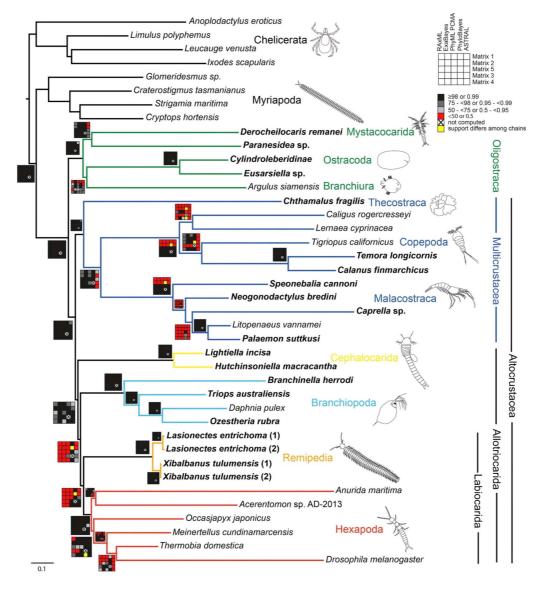
Время ответа: 19.03.2022 10:30:09

Баллы: **2.5** из 3

Задание ID27 (Задача № 1281491)

На рисунке изображена схема одного из типов клеточных контактов.

Изучите схему и для каждого из следующих утверждений укажите, является оно верным или неверным:


- 🗶 Основная функция изображённого на схеме контакта транспорт веществ между клетками
- ✔ На рисунке изображена схема полудесмосомы
- ✔ В формировании данного типа контакта принимает участие клаудин
- 🗸 Промежуточные филаменты, с которыми связывается данный тип контакта, могут состоять из кератина
- 🗶 Наиболее часто данный тип межклеточных контактов встречается в нервной ткани
- 🗶 Данный тип контакта ограничивает диффузию ионов

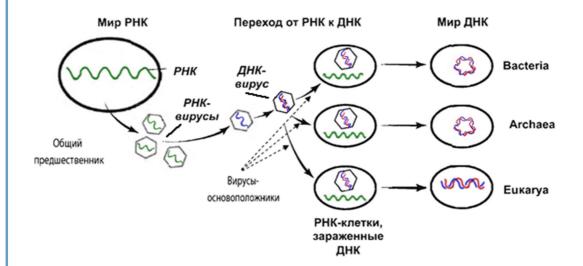
Время ответа: 19.03.2022 11:56:02

Баллы: **2.5** из 3

Задание ID31 (Задача № 1281503)

Относительно недавно было установлено, что насекомых (Insecta) следует рассматривать как сухопутную ветвь ракообразных (Crustacea). Это открытие изменило взгляды на эволюцию как ракообразных, так и насекомых, сформировав представление о таксоне Pancrustacea, который объединил ракообразных с шестиногими (Нехароda, насекомые и их ближайшие родственники). Однако, несмотря на интенсивные исследования, точная картина родственных связей различных линий ракообразных еще не установлена. Ниже приведена филогения ракообразных и их ближайших родственников из типа членистоногие, построенная на основе большого объема геномных данных (Schwentner M. et al., 2017). Для каждого узла предлагаемого дерева приведена поддержка топологии в зависимости от применяемого метода вычислений и матрицы: черный цвет означает высокую поддержку, красный – низкую поддержку, а желтый - варьирование степени поддержки в разных итерациях методах. Если большое число разных методов с использованием разных матриц демонстрирует низкую поддержку, это означает высокую вероятность того, что топология в этом дереве в реальности может оказаться другой: имеющиеся данные не позволяют утверждать истинность этой топологии.

Проанализируйте представленную схему и для каждого из следующих утверждений укажите, является оно верным или неверным:


- ▼ Таксон Mandibulata, объединяющий многоножек (Myriapoda) и ракообразных в широком смысле (включая шестиногих), является монофилетическим
- Узел, в котором расходятся ветви Ремипедий (Remipedia) и Шестиногих (Hexapoda), имеет низкую поддержку Согласно топологии представленного дерева Ремипедии (Remipedia) ,являются сестринской к группой к
- Шестиногим (Hexapoda)
- ✔ Высшие раки (Malacostraca) не являются ближайшими среди ракообразных родственниками Насекомым Низкие поддержки топологии дерева в основании Шестиногих (Нехароda) позволяют предположить
- возможную немонофилетичность таксона
- 💌 Представленные данные позволяют рассматривать группу Cephalocorida как вероятных предков насекомых

Время ответа: 19.03.2022 11:45:56

Баллы: **2.5** из 3

Задание ID33 (Задача № 1281511)

Мир РНК — гипотетический этап возникновения жизни на Земле, когда ансамбли молекул рибонуклеиновых кислот выполняли как функцию хранения генетической информации, так и катализ химических реакций. Впоследствии из их ассоциаций возникла современная ДНК-РНК-белковая жизнь, обособленная мембраной от внешней среды. Идея мира РНК была впервые высказана Карлом Вёзе в 1968 году. Вопрос эволюции современных клеток, использующих ДНК в качестве носителя наследственной информации, от гипотетических предков, использующих РНК для тех же целей, остается очень дискуссионным. Вероятно, большую роль в этих эволюционных процессах играли вирусы, которые могут использовать оба типа нуклеиновых кислот в качестве носителя генетической информации. На иллюстрации ниже приведена довольно спорная, но интересная гипотеза Патрика Фортера, предлагающая возможный эволюционный путь от РНК-организмов к ДНК.

Проанализируйте представленную схему и для каждого из следующих утверждений укажите, является оно верным или неверным согласно предложенной концепции:

Ответ ученика

- ✓ Первыми использовать ДНК в качестве носителя генетической информации стали вирусы
- 🗶 Одноцепочечные нуклеиновые кислоты появились позже двухцепочечных в процессе эволюции
- ✓ Первые ДНК-клетки появились в ходе встраивания генома ДНК-вируса в геном хозяина
- 🗶 Первые ДНК-клетки появились в ходе встраивания генома РНК-вируса в геном хозяина
- Три линии клеточных организмов (Bacteria, Archaea, Eukarya), произошли независимо от разных предшественников (РНК-клеток) согласно приведенной схеме
- 🗸 Вирусы происходят от доклеточных организмов согласно приведенной схеме

Время ответа: 19.03.2022 10:33:02

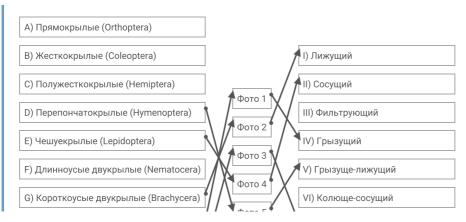
Баллы: **2.5** из 3

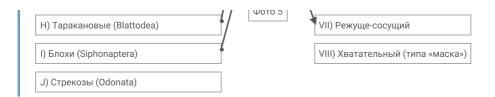
Задание ID36 (Задача № 1281520)

Ниже приведены фотографии различных насекомых:

После данной формулировки задания приведены три столбца элементов для сопоставления:

В левом столбце приведен список систематических групп (отряды или подотряды) насекомых (список избыточен – в нем есть лишние названия).

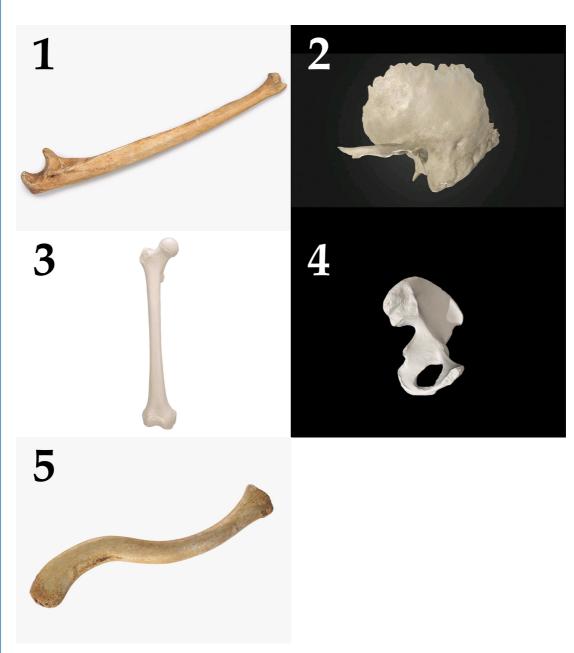

В среднем столбце указаны номера фотографий (сами фото приведены выше).


В правом столбце приведен список типов ротовых аппаратов (список избыточен – в нем есть лишние названия).

Загляните в глаза этим удивительным созданиям и соотнесите «портреты» насекомых (Insecta) с систематическими группами, к которым они относятся и типами имеющихся у них ротовых аппаратов.

Каждый элемент из среднего столбца можно соединить стрелкой <u>только с одним</u> элементом в левом столбце и/или в правом столбце. Каждая стрелка <u>должна быть уникальной</u>, т.е. провести две стрелки от двух элементов среднего столбца к одному и тому же элементу левого (или правого) столбца нельзя!

Для того, чтобы провести стрелку перетяните мышкой элемент к которому вы проводите стрелку поверх элемента от которого должна идти стрелка и отпустите. Чтобы отменить стрелку между элементами повторите их перемещение.



Время ответа: 19.03.2022 10:35:47

Баллы: 4 из 5

Задание ID38 (Задача № 1281525)

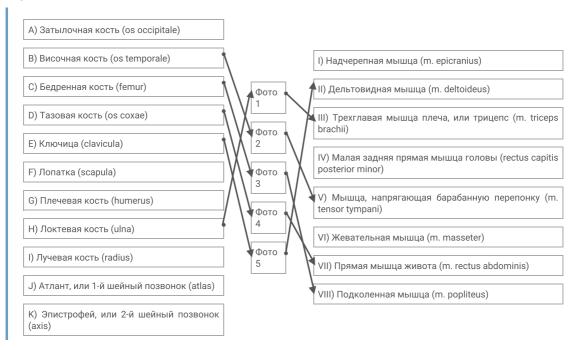
На фотографиях ниже изображены различные кости человека (масштаб не соблюден):

После данной формулировки задания приведены три столбца элементов для сопоставления:

В левом столбце приведен список названий костей (список избыточен - в нем есть лишние названия).

В среднем столбце указаны номера фотографий (сами фото приведены выше).

В правом столбце приведен список названий мышц (список избыточен – в нем есть лишние названия).

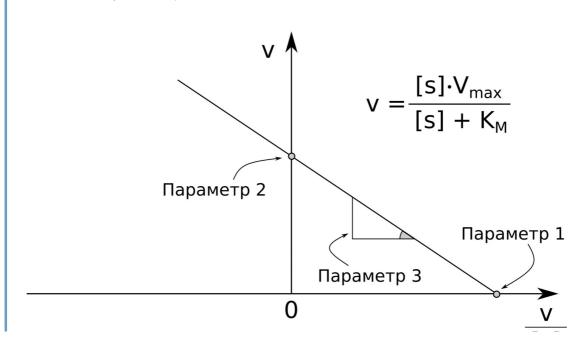

Определите название каждой из костей и соотнесите её с конкретной мышцей, которая к ней прикрепляется, из предложенного списка.

Каждый элемент из среднего столбца можно соединить стрелкой <u>только с одним</u> элементом в левом столбце и/или

в правом столбце. Каждая стрелка <u>должна быть уникальной</u>, т.е. провести две стрелки от двух элементов среднего столбца к одному и тому же элементу левого (или правого) столбца нельзя!

Для того, чтобы провести стрелку перетяните мышкой элемент к которому вы проводите стрелку поверх элемента от которого должна идти стрелка и отпустите. Чтобы отменить стрелку между элементами повторите их перемещение.

Ответ ученика



Время ответа: 19.03.2022 10:38:39

Баллы: **5** из 5

Задание ID40 (Задача № 1281531)

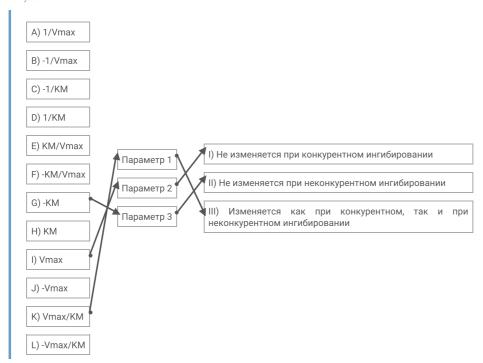
На рисунке представлено уравнение Михаэлиса-Ментен, описывающее скорость (v) ферментативной реакции в зависимости от концентрации субстрата [s] при определенных условиях (которые, для простоты, мы опустим). V_{max} – максимальная скорость реакции, К_М – константа Михаэлиса, в ближайшем приближении характеризующая сродство фермента к субстрату. До эпохи персональных компьютеров работа с уравнением Михаэлиса-Ментен была не очень удобна, поскольку зависимость v от [s] нелинейна. Чтобы обойти данную проблему, ученые придумали различные способы линеаризации этого выражения. В частности, на рисунке вы можете видеть способ Иди-Хофсти. Мы выделили три численных параметра на графике (пересечение с осями X и Y, а также тангенс угла наклона).

Известно, что активность ферментов может быть снижена добавлением ингибиторов. Конкурентные ингибиторы чаще всего соревнуются с субстратом за активный центр фермента. Неконкурентные ингибиторы не влияют на связывание фермента с субстратом, но снижают общую каталитическую активность белка.

После данной формулировки задания приведены три столбца элементов для сопоставления:

В левом столбце приведен список численных значений параметров (список избыточен).

В среднем столбце указаны номера параметров (указания на них приведены на рисунке выше).


В правом столбце приведен список свойств параметров.

Установите правильные соответствия между параметрами графика (1-3), их численными значениями (A-L) и свойствами (I-III).

Каждый элемент из среднего столбца можно соединить стрелкой <u>только с одним</u> элементом в левом столбце и/или в правом столбце. Каждая стрелка <u>должна быть уникальной</u>, т.е. провести две стрелки от двух элементов среднего столбца к одному и тому же элементу левого (или правого) столбца нельзя!

Для того, чтобы провести стрелку перетяните мышкой элемент к которому вы проводите стрелку поверх элемента от которого должна идти стрелка и отпустите. Чтобы отменить стрелку между элементами повторите их перемешение.

Ответ ученика

Время ответа: 19.03.2022 11:39:14

Баллы: **3** из 3

Задание ID42 (Задача № 1281537)

Большинство клеток человека несут диплоидный набор хромосом, однако в результате прохождения различных фаз клеточного деления, может меняться как количество хромосом в клетке – плоидность клетки (n), так и количество нитей ДНК (c), причём эти значения не всегда совпадают.

После данной формулировки задания приведены три столбца элементов для сопоставления:

В левом столбце приведен список событий, происходящих во время различных фаз (список избыточен – в нем есть лишние события).

В среднем столбце указаны названия фаз деления.

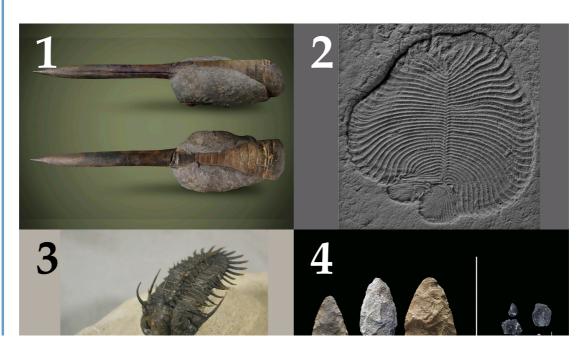
В правом столбце приведен список количества хромосом (плоидность) и нитей ДНК в клетке (список избыточен – в нем есть лишние значения).

Соотнесите фазу клеточного деления с событием, происходящим во время этой фазы, и количеством хромосом (плоидностью) и нитей ДНК.

Каждый элемент из среднего столбца можно соединить стрелкой <u>только с одним</u> элементом в левом столбце и/или в правом столбце. Каждая стрелка <u>должна быть уникальной</u>, т.е. провести две стрелки от двух элементов среднего столбца к одному и тому же элементу левого (или правого) столбца нельзя!

Для того, чтобы провести стрелку перетяните мышкой элемент к которому вы проводите стрелку поверх элемента от которого должна идти стрелка и отпустите. Чтобы отменить стрелку между элементами повторите их перемещение.

Ответ ученика


Время ответа: 19.03.2022 11:31:30

Баллы: 3.5 из 5

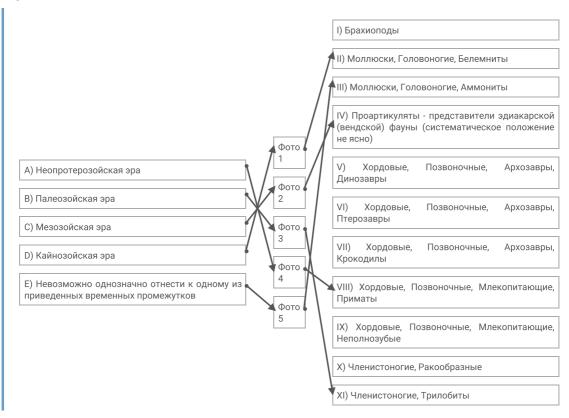
Задание ID44 (Задача № 1281544)

Палеонтологам часто приходится иметь дело с обрывочными сведениями о живых организмах. Иногда реконструкция всего облика древнего животного строится на основе фрагментов костей и сравнения с возможными родственниками. Кроме того, большая часть палеонтологического материала представлена следами жизнедеятельности организмов.

Ниже приведены фотографии различных палеонтологических материалов:

После данной формулировки задания приведены три столбца элементов для сопоставления:

В левом столбце приведен список названий эр.


В среднем столбце указаны номера фотографий (сами фото приведены выше).

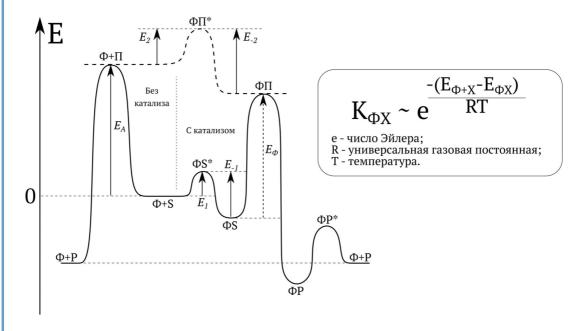
В правом столбце приведен список возможных систематических положений животных (список избыточен – в нем есть лишние элементы).

Проанализируете представленные фотоматериалы и сделайте вывод о возможной таксономической принадлежности животного и вероятном отрезке геохронологической школы, в котором можно обнаружить представителей этого таксона.

Каждый элемент из среднего столбца можно соединить стрелкой <u>только с одним</u> элементом в левом столбце и/или в правом столбце. Каждая стрелка <u>должна быть уникальной</u>, т.е. провести две стрелки от двух элементов среднего столбца к одному и тому же элементу левого (или правого) столбца нельзя!

Для того, чтобы провести стрелку перетяните мышкой элемент к которому вы проводите стрелку поверх элемента от которого должна идти стрелка и отпустите. Чтобы отменить стрелку между элементами повторите их перемещение.

Время ответа: 19.03.2022 10:49:46


Баллы: **3** из **5**

Задание ID51 (Задача № 1281551)

В левой части рисунка (отделенной вертикальной серой пунктирной линией) представлен энергетический профиль реакции, не катализируемой ферментом (Ф), который, тем не менее, присутствует в системе. Субстрат (S) превращается в продукт (P) через переходное состояние (П). В левой части рисунка («без катализа») координата реакции направлена влево.

На правой части рисунка изображена та же самая реакция, однако теперь ее катализирует фермент. Процесс начинается с образования фермент-субстратного комплекса (ФS), который через комплекс фермента и переходного состояния (ФП) переходит в комплекс фермента и продукта (ФР). Последний распадается на свободные фермент и продукт. Обратите внимание, что реакции образования комплексов фермента и субстрата, а также фермента и продукта характеризуются своими переходными состояниями (ФS* и ФР*). Также в верхней части рисунка изображен воображаемый процесс образования комплекса между ферментом и свободным переходным состоянием. В правой части рисунка («с катализом») координата реакции направлена вправо.

Вертикальная ось, нанесенная на левую часть рисунка, обозначает энергию системы; состояние системы, представленное свободными ферментом и субстратом, принято за 0. На рисунке обозначены некоторые известные энергетические переходы (E_A , E_1 , E_2 , E_2 , имеют положительное значение, выделены курсивом!). Значение перехода E_{Φ} неизвестно. Термодинамические параметры образования комплекса между ферментом и некоторым соединением (X) могут быть охарактеризованы константой диссоциации ($K_{\Phi X}$). Инструкция по ее вычислению присутствует на рисунке (температуру Т указывают в Кельвинах, число Эйлера приблизительно равно 2,71828). Чем больше данная величина, тем больше концентрации несвязанных фермента и соединения X в состоянии равновесия. При решении считайте, что пропорциональное равенство (\sim) соответствует точному равенству (=).

Ответьте на следующие подвопросы:

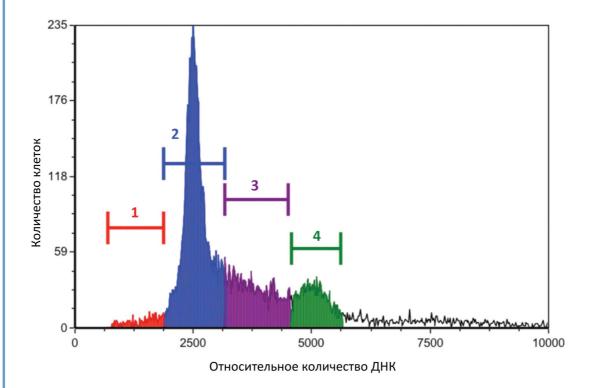
- 1) Рассчитайте значения энергии системы в следующих состояниях: ФS, Ф+П, ФП. Обозначьте их $E_{\Phi S}$, $E_{\Phi + \Pi}$, $E_{\Phi \Pi}$. Используйте лишь известные переходы и помните, что они имеют векторный, а не скалярный характер.
- 2) Рассчитайте константы диссоциации комплексов фермент-субстрат ($K_{\Phi S}$) и фермент-переходное состояние ($K_{\Phi \Pi}$). Используйте значения $E_{\Phi S}$, $E_{\Phi + \Pi}$, полученные вами при ответе на подвопрос 1.
- 3) Как должны соотноситься E_A и E_{Φ} , чтобы фермент выступал эффективным катализатором реакции? Предположите, что скорость процесса лимитируется самой медленной реакцией.
- 4) Рассчитайте E_{Φ} , используя данные, полученные при ответе на подвопрос 1.
- 5) Как должны соотноситься $K_{\Phi S}$ и $K_{\Phi \Pi}$, если сродство фермента больше в отношении переходного состояния, а не субстрата реакции?

6) Докажите, что фермент будет выступать эффективным катализатором реакции, если его сродство к переходному состоянию реакции больше, чем сродство к субстрату.

При внесении ответа в поле ниже, пожалуйста, сохраняйте нумерацию подвопросов на которые вы даете ответы!

Ответ ученика

```
1) Согласно графику: E_{-}(\Phi S) = -(E_{-}(1) - E_{-}(-1))
E_{-}(\Phi H\Pi) = E_{-}(A)
E_{-}(\Phi \Pi) = E_{-}(A) - (E(-2) - E(2))
2) K_{-}(\Phi S) = e^{A}(-(E_{-}(\Phi S) - E_{-}(\Phi S)) + RT) = e^{A}(E_{-}(\Phi S) + RT) = 2.72^{A}((-E_{-}(1) + E_{-}(-1)) / RT)
По аналогии с выше описанным K_{-}(\Phi \Pi) = 2.72^{A}(-(E_{-}(\Phi H\Pi) - E_{-}(\Phi \Pi)) + RT) = 2.72^{A}(-(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-}(E_{-
```


- 4) $E_{-}(\Phi) = E_{-}(\Phi\Pi) + (E(-1) E(1)) = E(A) (E(-2)-E(2)) + (E(-1) E(1))$
- 5) К(ФП) меньше К(ФС). Поскольку это константы диссоциации, то при большем сродстве фермента к переходному состоянию, его константа диссоциации для переходного состояния будет меньше
- 6) Если будет выше сродство к субстрату, то будет повышаться энергия активации реакции, так как фермент будет с меньшей вероятностью позволять преобразовываться субстрату. Если же сродство выше для переходного состояния, то энергетически более выгодно перевести субстрат в переходное состояние и запустить реакцию.

Время ответа: 19.03.2022 11:59:35

Баллы: **5** из 12

Задание ID53 (Задача № 1281553)

Окрашивание клеток флуоресцентным красителем йодидом пропидия позволяет оценить количество ДНК в клетке. На рисунке вы видите гистограмму распределения соматических клеток с различным количеством ДНК. По ней можно определить процент популяции клеток, находящихся в различных фазах клеточного цикла. Область 2 на рисунке соответствует G1-фазе клеточного цикла.

Ответьте на следующие подвопросы:

- 1) Какой фазе клеточного цикла соответствует область гистограммы 3?
- 2) В какой области гистограммы находятся клетки в фазе G0?
- 3) В какой области гистограммы находятся клетки, делящиеся митозом?

- 4) К каким изменениям гистограммы приведёт обработка клеток нокодазолом, который нарушает полимеризацию микротрубочек?
- 5) О чём свидетельствует увеличение содержания клеток в области 1?

При внесении ответа в поле ниже, пожалуйста, сохраняйте нумерацию подвопросов на которые вы даете ответы!

Ответ ученика

- 1) Соответствует фазе S. Вывод можно сделать исходя из того, что именно в этой фазе клеточного цикла происходит синтез днк, значит количество днк постепенно увеличивается в 2 раза, что можно видеть по промежуточному значению флуоресценции между пиками 2 и 4. А количество днк в пике 4 в 2 раза больше чем в пике 2 (отношение значения флуоресценции 5000\2500=2)
- 2) Область 2. В фазе G0 клетки не удваивают днк, значит количество днк будет совпадать с таковым для фазы G1
- 3) Область 4 для клеток, находящихся в процессе митоза и область 2 для клеток, которые только что разделились.
- 4) Большая часть клеток перейдет в область 4, поскольку нарушение полимеризации микротрубочек повлечет за собой нарушение веретена деления и хромосомы не будут расходиться к полюсам клеток. Значит в клетках будет остановлен процесс деления и они останутся с удвоенным набором генетического материала, поскольку на удвоение нокодазол эффекта не оказывает
- 5) Об увеличении числа погибших клеток. Содержание днк соответствующее области 1 не соответствует нормальному количеству днк в клетке. Это значит, что генетических материал поврежден и\или частично утерян. Так могут себя вести мертвые клетки. Потенциально также можно сказать о нарушении процессов деление (неравномерное расхождение генетического материала), однако такие случаи чаще всего все же ведут к гибели клеток.

Время ответа: 19.03.2022 11:30:39

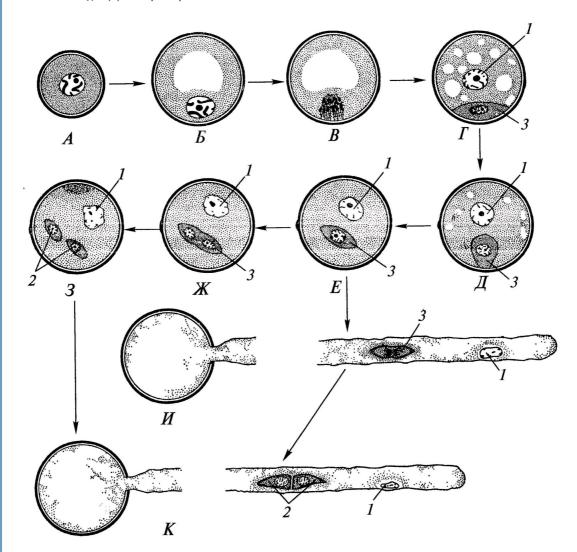
Баллы: 10 из 10

Задание ID4 (Задача № 1281334)

На рисунке показан поперечный срез одного из видоизменённых растительных органов.

Для каждого утверждения укажите, является оно верным или неверным для данного органа:

- ◆ Это поперечный срез видоизменённого корня
- 🗶 Этот орган часто встречается у растений, обитающих на заболоченной почве


- 🗶 Под цифрой 2 показана паренхима сердцевины
- 🗶 Под цифрой 5 показана эпидерма
- 🗶 Основная функция данного органа поглощение воды из почвы
- 🗶 Данный орган принадлежит однодольному растению

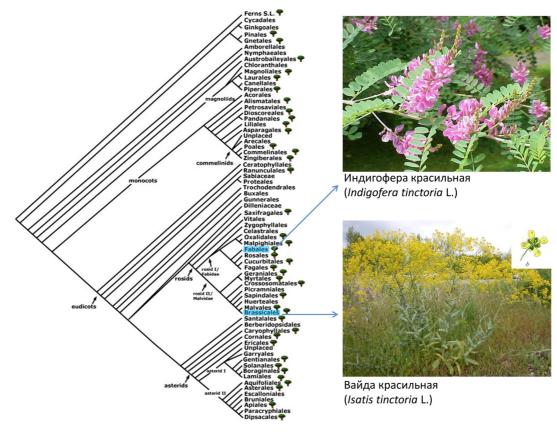
Время ответа: 19.03.2022 14:36:07

Баллы: **3** из 3

Задание ID5 (Задача № 1281337)

На схеме показаны варианты развития мужского гаметофита (пыльцевого зерна) у цветковых растений. Начальная стадия (A) — микроспора.

Проанализировав схему, укажите для каждого утверждения, является оно верным или неверным:


Ответ ученика

- ✔ Структуры под цифрой 2 являются гаплоидными
- 🗶 Трёхклеточное пыльцевое зерно прорастает на стадии 3
- ✓ Под цифрой 3 показана спермиогенная клетка
- 🗶 Под цифрой 2 показаны сперматозоиды
- 🗶 При прорастании пыльцевого зерна спермиогенная клетка образует пыльцевую трубку
- ✓ Структура под цифрой 1 является гаплоидной

Время ответа: 19.03.2022 13:03:24

Баллы: **2.5** из 3

На молекулярно-филогенетическом дереве цветковых растений (по Stevens, P.F., www.mobot.org) голубым цветом отмечены порядки, в которые входят растения-источники синей краски: вайда красильная (Isatis tinctoria L.) и индигофера красильная (Indigofera tinctoria L.).

Обозначения:

```
monocots — однодольные;
eudicots — высшие двудольные;
magnoliids — магнолииды или примитивные двудольные;
commelinids — коммелиниды;
rosids — розиды;
asterids — астериды;
rosidl/Fabidae — фабиды;
rosidll/Malvidae — мальвиды;
asteridl — астериды I;
```

Проанализируйте дерево и укажите для каждого утверждения, является оно верным или неверным:

Ответ ученика

- ✔ Индигофера входит в группу rosidl/Fabidae
- ✔ Вайда и индигофера являются двудольными растениями
- 🗶 Если объединить порядки Fabales и Brassicales, то вместе они образуют монофилетическую группу
- 🗙 Вайда входит в группу asterids

asteridII - астериды II;

- 🗶 У вайды и индигоферы венчик срастается в трубку
- Цветок индигоферы является зигоморфным

Время ответа: 19.03.2022 13:05:05

Баллы: **3** из 3

Задание ID11 (Задача № 1281356)

Известно, что у растительноядных млекопитающих пищеварительная система, в частности её отдельные органы, очень сложно устроены. Перед вами на фото представлена внутренняя поверхность одного из отделов такого органа.

Проанализируйте представленное фото и для каждого из следующих утверждений укажите, является оно верным или неверным:

Ответ ученика

Многокамерный желудок является эволюционным приспособлением для синтеза незаменимых аминокислот и свойственен отрядам Зайцеобразные (Lagomorpha), Парнокопытные (Artiodactyla), Непарнокопытные (Perissodactyla)

- Истинным желудком является сычуг
- Движение пищи в многокамерном желудке осуществляется в последовательности: рубец сетка повторное пережёвывание книжка сычуг
- 🗶 Многокамерный желудок домашней коровы состоит из 3-х камер
- 🗸 У новорождённого телёнка размер рубца по отношению к другим отделам увеличивается с возрастом
- Движение пищи в многокамерном желудке осуществляется в последовательности: сычуг сетка отрыгивание книжка рубец

Время ответа: 19.03.2022 13:05:51

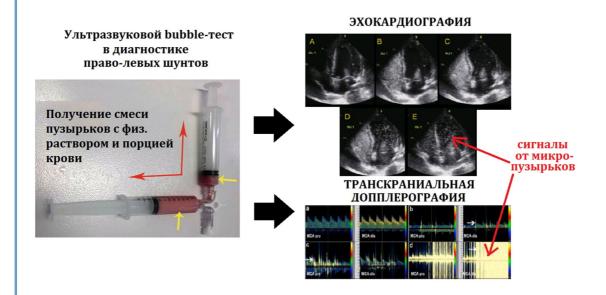
Баллы: **3** из 3

Задание ID12 (Задача № 1281358)

Известно, что строение определённого органа напрямую связано с его функцией. Перед вами на рисунке схематично изображён один из органов позвоночных.

Проанализируйте рисунок и для каждого из следующих утверждений укажите, является оно верным или неверным:

Ответ ученика


- ✓ Многокамерный желудок свойственен НЕ всем травоядным
- 🗶 Многокамерный желудок домашней лошади состоит из 4-х камер
- 🗶 Это матка крупного рогатого скота
- ✓ Этот орган состоит из 4-х камер
- **У** Входное и выходное отвестия закрываются при помощи сфинкторов, регулируемых вегетативной нервной системой
- 🗸 Это полый мышечный орган

Время ответа: 19.03.2022 13:06:38

Баллы: **3** из 3

Задание ID16 (Задача № 1281459)

Баббл-тест – это высокочувствительный метод ультразвуковой диагностики сброса крови справо-налево (из малого круга кровообращения в большой, минуя микроциркуляторное русло). В кровеносные сосуды вводят смесь физиологического раствора NaCl с пузырьками воздуха, взбитую в шприце, далее производят регистрацию потока микропузырьков в сердце или в сосудах головного мозга методом ультразвука. К самым частым праволевым кровеносным шунтам относят открытое овальное окно и легочные шунты.

- ✓ Целесообразно производить инъекцию смеси микропузырьков в периферические вены
- При отсутствии право-левых шунтов у здорового человека сигналы от микропузырьков не регистрируются в правых отделах сердца
- Если пузырьки регистрируются в сосудах головного мозга, то испытуемому не рекомендуется заниматься глубоководным погружением
- Микропузырьковый сигнал при наличии легочных шунтов регистрируется позднее, чем при наличии открытого овального окна
- ullet Открытое овальное окно в большинстве случаев относится к врожденным порокам сердца
- Легочные право-левые шунты являются физиологическими шунтами и имеют важное функциональное значение

Время ответа: 19.03.2022 14:34:54

Баллы: **2.5** из 3

Задание ID17 (Задача № 1281462)

Иван-Царевич устроил международный конкурс красоты для лягушек и жаб, чтобы найти среди них заколдованную Царевну. В финал вышло 5 красивых, но ядовитых претенденток:

Амазонская двухцветная лягушка (*Phyllomedusa bicolor*)

дерморфин Агонист мю-опиоидных рецепторов

2/4

эпибатидин Неселективный агонист ацетилхолиновых рецепторов

Колорадская речная

Эквадорская Колумбийская Трехцветная лягушка золотая лягушка (Epipedobates anthonyi) (Phyllobates terribilis)

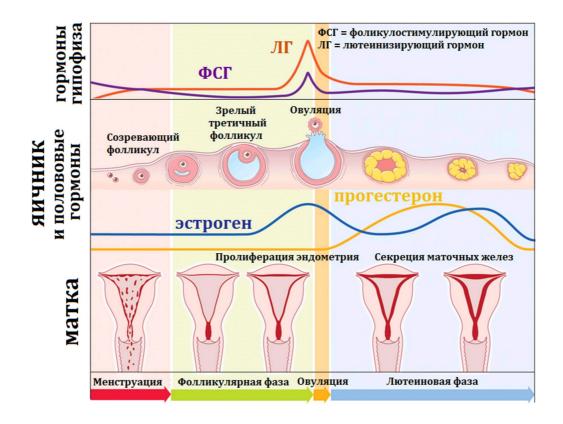
БАТРАХОТОКСИНИнгибитор инактивации
потенциал-зависимых
Na⁺-каналов

Аргентинская песочная жаба (Rhinella arenarum)

АРЕНОБУФАГИН Блокатор Na⁺/K⁺-насоса

БУФОТЕНИН Агонист серотониновых рецепторов

Царевич знал, что целовать ядовитых лягушек и жаб очень опасно, но забыл, какие признаки отравления могут появиться после общения с каждой из претенденток. Помогите Царевичу вспомнить их. Для каждого из следующих утверждений укажите, является оно верным или неверным:


- 🗸 Буфотенин вызывает эйфорию, манию, диарею, дрожание конечностей
- **ж** Дерморфин вызывает повышенное слюноотделение, судороги, повышение артериального давления, мышечный паралич
- 🗶 Эпибатидин вызывает сердечные аритмии, диарею, галлюцинации
- 🗶 Тетродотоксин (яд рыбы фугу) имеет аналогичный батрахотоксину механизм действия
- 🗸 Батрахотоксин вызывает стойкую деполяризацию кардиомиоцитов с развитием фибрилляции желудочков
- 🗸 Аренобуфагин вызывает сердечные аритмии, диарею, галлюцинации

Время ответа: 19.03.2022 14:40:39

Баллы: **3** из 3

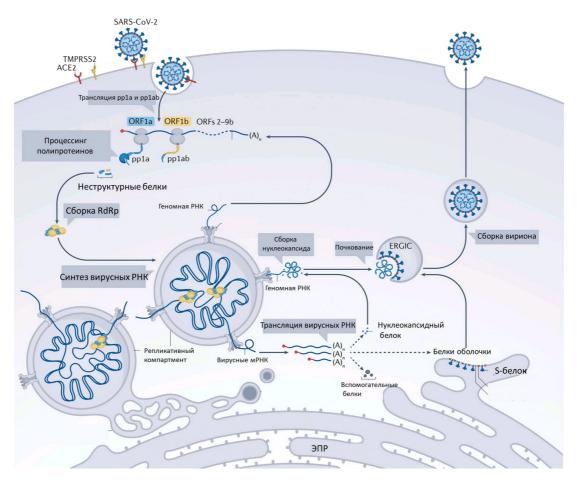
Задание ID18 (Задача № 1281465)

Женский менструальный цикл – это сложный физиологический процесс, состоящий из синхронизированных циклических изменений в промежуточном головном мозге, яичниках, матке:

Соответственно, отсутствие менструаций (аменорея) может быть вызвано патологией промежуточного мозга, яичников или матки. Для выяснения причины аменореи производят функциональные пробы: с изолированным введением прогестерона, либо с последовательным введением эстрогена и прогестерона. Гормоны вводятся в организм извне, но с физиологическими дозировками и длительностью.

Для каждого из следующих утверждений укажите, является оно верным или неверным:

Ответ ученика


- Наступление менструации после изолированного введения прогестерона указывает на стойкое отсутствие овуляции зрелого фолликула
- **ж** Наступление менструации при последовательном введении эстрогена и прогестерона может возникать при патологии эндометрия матки
- Появление менструации после эстроген-прогестероновой пробы при низком уровне ФСГ указывает на патологию промежуточного мозга
- При стойком отсутствии овуляции зрелого фолликула введение прогестерона приведет к скудным менструациям из-за гипоэстрогении
- Отсутствие менструации после изолированного введения прогестерона может возникать при гиперэстрогении Недостаточная продукция прогестерона при сохранной продукции эстрогена − это фактор риска
- злокачественной пролиферации клеток эндометрия

Время ответа: 19.03.2022 14:32:02

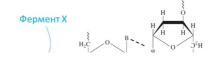
Баллы: **2.5** из 3

Задание ID22 (Задача № 1281476)

белком взаимодействует с белком АСЕ2, расположенным на мембране клетки. Кроме того, для слияния вируса с мембраной клетки необходимо расщепление вирусного S-белка клеточной протеиназой TMPRSS2. В цитоплазме происходит трансляция вирусных полипротеинов pp1a и pp1ab, которые затем нарезаются вирусными протеиназами на отдельные неструктурные белки, часть из которых образует вирусную PHK-полимеразу (RdRp), осуществляющую репликацию вирусной геномной PHK и синтез вирусных мРНК. Синтез вирусных PHK идет в специальном репликативном компартменте, который собирается в клетке под действием вирусных белков. После трансляции вирусных структурных белков происходит сборка вирионов, которые покидают клетку. Расшифровка аббревиатур: ORF — открытая рамка считывания, ERGIC — компартмент, включающий везикулы от эндоплазматического ретикулума, направляющиеся в комплекс Гольджи.

Рассмотрите схему и решите, какие вещества могут использоваться в качестве препаратов, блокирующих жизненный цикл SARS-CoV-2? Для каждого предложенного вещества укажите, подходит оно (отметьте, как «верно») или нет (отметьте, как «неверно»):

Ответ ученика


- ✔ Антитела, блокирующие S-белок
- 🗶 Растворимая форма внеклеточного домена АСЕ2
- ✔ Ингибиторы взаимодействия нуклеокапсидного белка с РНК
- 🗶 Антибиотик пенициллинового ряда
- 🗶 Ингибиторы вирусной ДНК-зависимой РНК-полимеразы
- 🗶 Антитела, блокирующие вирусную РНК

Время ответа: 19.03.2022 13:09:19

Баллы: **2.5** из 3

Задание ID23 (Задача № 1281479)

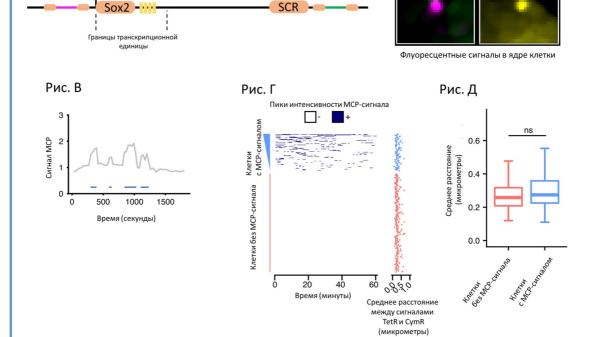
На рисунке показан механизм реакции, катализируемой ферментом X и имеющей три основных этапа (1, 2, 3). Для простоты от фермента X показана только часть полипептидной цепи с остатком лизина (Lys) в активном центре. Также для простоты некоторые части показанных на рисунке молекул заменены буквой «В». Стрелки показывают перемещения электронных пар, волнистые линии – продолжение полимерных молекул. Обратите внимание, что на этапе (1) высвобождается побочный продукт Y, структура которого не показана.

Рассмотрите механизм реакции и укажите для каждого утверждения, является оно верным или неверным:

Ответ ученика

- 🗶 Связи, показанные пунктирными линиями, по своей природе являются ковалентными
- ✓ Фермент X это ДНК-лигаза
- 🗶 Молекула Y это аденозинмонофосфат
- ✔ Знаком «?» отмечено продолжение молекулы в сторону 3'-конца
- **х** Фермент X это РНК-полимераза
- ✓ Фермент X необходим для процесса репликации ДНК

Время ответа: 19.03.2022 13:12:03


Баллы: **3** из 3

Задание ID24 (Задача № 1281484)

В недавно опубликованной научной статье ученые изучали пространственное взаимодействие между геном Sox2 и энхансером этого гена – SCR (Sox2 control region). Для этого ученые использовали специальную клеточную линию, полученную на основе эмбриональных стволовых клеток мыши. В такой линии на расстоянии 5 тысяч пар нуклеотидов (т.п.н.) от энхансера встроили массив сайтов связывания белка TetR (TetO-сайты), на расстоянии 8 т.п.н. от промотора Sox2 встроили массив сайтов связывания белка CymR (CuO-сайты), а в транскрибируемую часть гена Sox2 встроили массив сайтов связывания белка оболочки бактериофага – MCP (MS2-сайты) (смотрите рис. А). Генетическое расстояние между промотором гена Sox2 и энхансером SCR составляет 200 т.п.н. Белок MCP связывается с сайтами MS2 только в составе молекулы PHK. Описанные генетические модификации затрагивали только одну из двух гомологичных хромосом. Ученые также доставили в полученные клетки гены, кодирующие белки TetR, MCP и CymR, при этом каждый был слит с флуоресцентным белком своего цвета, что делало описанные генетические элементы видимыми в флуоресцентном микроскопе (рис. Б).

На графике (рис. В) показана зависимость интенсивности флуоресценции сигнала МСР от времени в одной из клеток. Моменты времени, когда интенсивность сигнала превышала некое пороговое значение, обозначены горизонтальными черточками. На графике (рис. Г) собрана информация по популяции клеток – для каждой клетки черточками показаны моменты времени, когда интенсивность сигнала превышала пороговое значение. При этом клетки на графике ранжированы по суммарной интенсивности МСР-сигнала за время наблюдения: вверху клетки с самой высокой суммарной интенсивностью сигнала, к низу интенсивность сигнала убывает. Справа на этом графике для каждой клетки показано среднее расстояние (в микрометрах) между сигналами TetR и CymR. Это расстояние показано также для клеток, в которых не обнаруживался МСР-сигнал (правая нижняя часть графика). Графики типа «ящик с усами» (рис. Д) построены по данным графика нарис. Г. Графики на рис. Д отражают расстояния между TetR и CymR-сигналами для клеток, в которых не обнаруживался или обнаруживался МСР-сигнал. Здесь жирной горизонтальной чертой показано среднее значение, в границах «ящика» заключено 50% наблюдаемых значений и «усы» показывают минимальное и максимальное значения. Надпись «ns» и черная черта под ней показывают, что между группами отсутствует статистически достоверная разница.

Рис. А Генетическая карта изучаемого участка генома Массив СиО МS2-повторы Массив ТеtO

Какие выводы можно сделать из этого эксперимента? Для каждого из следующих утверждений укажите, является оно верным или неверным:

Ответ ученика

- 🗶 Интенсивность транскрипции гена Sox2 в эмбриональных стволовых клетках мыши постоянна во времени
- ★ Сигнал МСР отражает трансляцию гена Sox2
- ✓ Интенсивность транскрипции гена *Sox2* не зависит от близости энхансера SCR к этому гену в пространстве ядра
- → На всех стадиях клеточного цикла у клеток в исследуемой популяции можно обнаружить строго по одному сигналу TetR и CvmR
- 🗶 Необходимое условие транскрипции гена Sox2 близость энхансера SCR к этому гену в пространстве ядра
- 🗶 Суммарное время, когда ген Sox2 транскрибируется в клетке, одинаково во всех клетках в популяции

Время ответа: 19.03.2022 13:18:26

Баллы: **2.5** из 3

Задание ID28 (Задача № 1281495)

В начале XX века возникла новая отрасль животноводства – разведение пушных зверей в неволе. Для организации зверофермы по разведению американских норок (Neovison vison) животных отлавливали в дикой природе и помещали в заранее подготовленные шеды (клетки для пушных зверей). Среди норок клеточного содержания человек вел искусственный отбор, оставляя для размножения особей, имеющих самые качественные шкурки и дающих хороший приплод. Пары для скрещивания тоже подбирал человек. Вскоре норководы стали сообщать о рождении детенышей необычных окрасов. Причём детеныши одинакового фенотипа зачатую рождались на разных зверофермах, между которыми никогда не было обмена норками. Таких детенышей выращивали с особым вниманием и оставляли для размножения. Впоследствии они стали родоначальниками цветных пород норок. Какие утверждения верно объясняют появление на зверофермах норок с новыми, неизвестными в дикой природе, окрасами. Для каждого из следующих утверждений укажите, является оно верным или неверным:

- Человек еще не имел опыта разведения норок в неволе и не мог создать животным оптимальные условия для жизни и размножения, неоптимальные условия содержания стали причиной резкого увеличения количества мутаций
- Человек ограничивал свободу скрещивания, что случайным образом увеличивало вероятность рождения рецессивных гомозигот
- **ж** Искусственный отбор, проводимый человекам, стал причиной возникновения большого количества новых мутаций
- в природных популяциях мутации, влияющие на окрас шерсти, не поддерживались естественным отбором,

поэтому частота встречаемости рецессивных аллелеи оыла низкои
В искусственных условиях у норок полностью отсутствовала борьба за существование, что вызвало
увеличение количества новых мутаций

Время ответа: 19.03.2022 14:43:48

Баллы: **3** из 3

Задание ID29 (Задача № 1281498)

Юный натуралист описывал процесс передачи наследственности в клетках на примере американской норки (Neovison vison), но допустил ошибки. Зная, что у американской норки в диплоидном наборе 30 хромосом, для каждого из следующих утверждений укажите, является оно верным или неверным:

Ответ ученика

- ✔ В интерфазе S количество молекул геномной ДНК удваивается
- ✓ После первого деления мейоза в клетках американской норки содержится 30 молекул геномной ДНК
 Между первым и вторым делением мейоза происходит интерфаза, сопровождающаяся репликацией геномной
 В пыл.
- 🗸 У американской норки в метафазе первого делений мейоза по экватору выстраиваются 15 бивалентов
- 🗶 Во время мейоза нуклеотидная последовательность каждой из молекул геномной ДНК не изменяется
- 🗸 В интерфазе G1 в соматических клетках американской норки содержится 30 молекул геномной ДНК

Время ответа: 19.03.2022 13:20:49

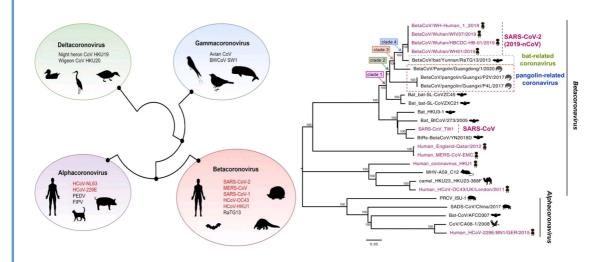
Баллы: **3** из 3

Задание ID30 (Задача № 1281500)

В живой уголок Станции юных натуралистов привезли трех взрослых американских норок (Neovison vison), одного самца и двух самок. Воспитанники станции соорудили вольер и с удовольствием наблюдали за животными. В период гона обе самки забеременели и принесли детенышей. Когда детеныши подросли, их вместе с родителями вернули на звероферму. Юным натуралистам предложили рассчитать, популяция какого состава могла бы сформироваться на Станции юных натуралистов, если бы детеныши остались. Известно, что исходные самки были гомозиготны по доминантному аллелю гена А, находящемуся в X-хромосоме (X^AX^A), а самец был рецессивной гемизиготной (X^aY). Наставники ребят отметили, что никаких мутаций и хромосомных перестроек в популяции не происходит, все особи имеют возможность свободно скрещиваться, у них одинаковая фертильность, а все их потомки выживают и остаются в составе популяции. На основании наблюдений и заданных условий ребята высказали ряд гипотез. Для каждой из них укажите, является она верной или неверной:

Ответ ученика

- ▼ В первом поколении все детеныши женского пола будут иметь генотип X^AX^a
- ✓ В Y-хромосоме нет гена А
- 🗶 В популяции на момент равновесия частота встречаемости аллеля а составит 20%
- 🗸 Со временем в популяции установится равновесие, которое будет сохраняться в последующих поколениях
- 🗶 В популяции никогда не будет самок с генотипом X^aX^a, т.к. изначально этот аллель был только у самца
- 🗶 Среди самок в популяции на момент равновесия будет 32% гетерозигот по гену А


Время ответа: 19.03.2022 13:24:31

Баллы: **3** из 3

Задание ID32 (Задача № 1281508)

Вирус SARS-CoV-2 является причиной продолжающейся глобальной вспышки коронавирусного заболевания COVID-19. Другие вирусы той же филогенетической группы были ответственны за предыдущие региональные вспышки, включая SARS и MERS. SARS-CoV-2 имеет зоонозное происхождение, аналогичное вирусамвозбудителям этих предыдущих вспышек. Повторяющееся внедрение вирусов животных в человеческую получению приволение в вспышкам заболеваний предполагает, что полобы не эпилемии в булушем

неизбежны. Таким образом, изучение происхождения и продолжающейся эволюции SARS-CoV-2 дает важную информацию для подготовки к будущим вспышкам и их предотвращению. Ниже представлены две иллюстрации из разных источников об эволюции SARS-CoV-2. На первой иллюстрации изображены четыре основных рода семейства коронавирусов (Coronaviridae), силуэтами обозначены животные – хозяева вируса, а розовым шрифтом – вирусы человека. На второй – более подробные данные для рода Betacoronavirus, к которому относится и SARS-CoV-2. В ней обратите внимание на длину ветвей, являющейся графическим отображением дистанций между последовательностями: чем выше дистанция, тем больше различий накоплено между последовательностями, что может говорить как о быстром накоплении изменений по действием отбора, так и о постепенным накоплении в течении большого промежутка времени. Так или иначе, дистанцию можно рассматривать в качестве меры родства между изучаемыми группами.

Проанализируйте представленные схемы и для каждого из следующих утверждений укажите, является оно верным или неверным:

Ответ ученика

- Вирус SARS-CoV является более близким родственником вирусу SARS-CoV-2, чем вирус MERS-CoV
- Коронавирусы летучих мышей (bat-related coronaviruses) и панголинов (pangolin-related coronaviruses) наиболее родственны SARS-CoV-2
- ✔ Для всех вирусов семейства Coronaviridae хозяевами являются теплокровные животные
- ✔ Коронавирусы могут относительно легко менять хозяев в ходе эволюции
- Представители семейства Coronaviridae способны относительно легко менять хозяев, переходя даже на представителей другого класса
- SARS-CoV-2 первый открытый коронавирус человека, чьим ближайшим известным родственником является коронавирус, поражающий летучих мышей

Время ответа: 19.03.2022 13:28:54

Баллы: **2.5** из 3

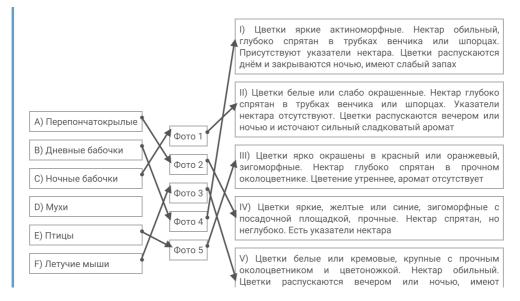
Задание ID35 (Задача № 1281515)

В ходе эволюции у многих цветковых растений сформировались приспособления для взаимодействия с определённым типом опылителя.

Ниже приведены фотографии различных растений:

После данной формулировки задания приведены три столбца элементов для сопоставления:

В левом столбце приведен список опылителей (список избыточен - в нем есть лишние типы опылителей).


В среднем столбце указаны номера фотографий (сами фото приведены выше).

В правом столбце приведен список приспособлений цветка (список избыточен – в нем есть лишние характеристики).

Рассмотрите фотографии цветков или соцветий и соотнесите их с основным характерным для них типом опылителя и приспособлениями для привлечения этого опылителя.

Каждый элемент из среднего столбца можно соединить стрелкой <u>только с одним</u> элементом в левом столбце и/или в правом столбце. Каждая стрелка <u>должна быть уникальной</u>, т.е. провести две стрелки от двух элементов среднего столбца к одному и тому же элементу левого (или правого) столбца нельзя!

Для того, чтобы провести стрелку перетяните мышкой элемент к которому вы проводите стрелку поверх элемента от которого должна идти стрелка и отпустите. Чтобы отменить стрелку между элементами повторите их перемещение.

фруктовый, гнилостный, бродильный запах или запах плесени

VI) Цветки тёмные, коричнево-пурпурные. Нектар отсутствует. Цветки источают запах разлагающегося белка

Время ответа: 19.03.2022 13:34:20

Баллы: **3** из 5

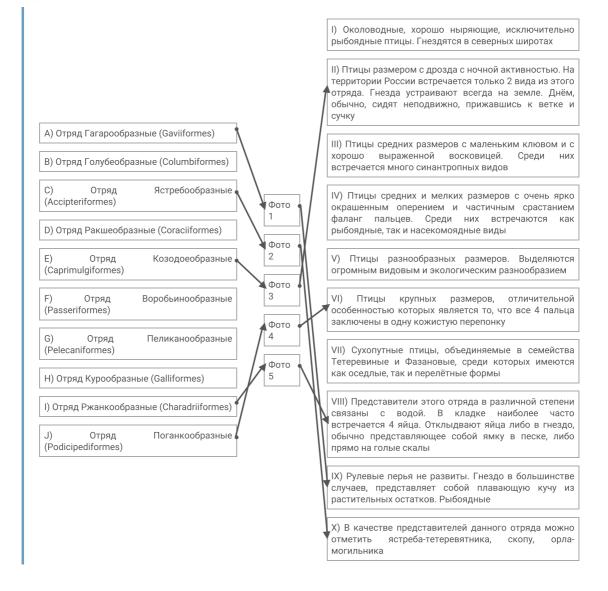
Задание ID37 (Задача № 1281521)

Ниже приведены изображения некоторых представителей отрядов класса Aves:

После данной формулировки задания приведены три столбца элементов для сопоставления:

В левом столбце приведен список названий систематических групп (список избыточен – в нем есть лишние названия).

В среднем столбце указаны номера фотографий (сами фото приведены выше).

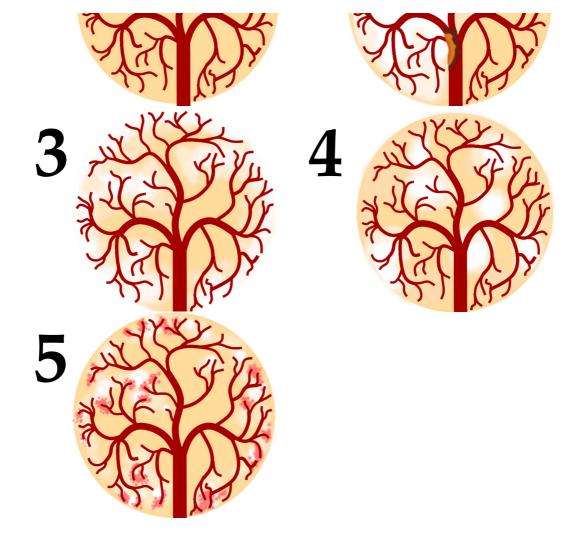

В правом столбце приведен список характеристик отрядов (список избыточен – в нем есть лишние характеристики).

Используя данные о морфологии, экологии и систематики, соотнесите изображение с названием отряда и подходящей для него характеристикой.

Каждый элемент из среднего столбца можно соединить стрелкой <u>только с одним</u> элементом в левом столбце и/или в правом столбце. Каждая стрелка <u>должна быть уникальной</u>, т.е. провести две стрелки от двух элементов среднего столбца к одному и тому же элементу левого (или правого) столбца нельзя!

Для того, чтобы провести стрелку перетяните мышкой элемент к которому вы проводите стрелку поверх элемента от которого должна идти стрелка и отпустите. Чтобы отменить стрелку между элементами повторите их перемещение.

Ответ ученика


Время ответа: 19.03.2022 14:52:39

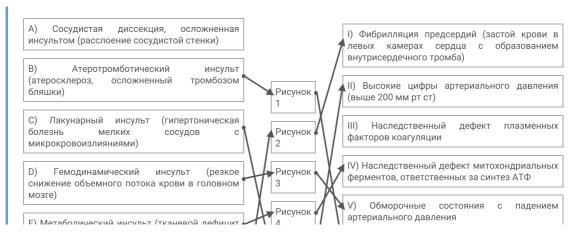
Баллы: **4** из 5

Задание ID39 (Задача № 1281529)

По данным ВОЗ, инсульт (острое нарушение мозгового кровообращения, приводящее к некрозу нервной ткани) — вторая по частоте причина смерти после ишемической болезни сердца. Первостепенной задачей врача является скорейшее установление причины инсульта для определения тактики лечения. На рисунках ниже изображена модель кровообращения ткани головного мозга:

После данной формулировки задания приведены три столбца элементов для сопоставления:

В левом столбце приведен список типов ишемического инсульта (список избыточен - в нем есть лишние элементы).


В среднем столбце указаны номера рисунков (сами рисунки приведены выше).

В правом столбце приведен список основных факторов риска (список избыточен - в нем есть лишние элементы).

Установите тип ишемического инсульта и основной фактор риска его развития по картине расположения очагов ишемии, их контуру и размеру, а также по состоянию кровеносного русла.

Каждый элемент из среднего столбца можно соединить стрелкой <u>только с одним</u> элементом в левом столбце и/или в правом столбце. Каждая стрелка <u>должна быть уникальной</u>, т.е. провести две стрелки от двух элементов среднего столбца к одному и тому же элементу левого (или правого) столбца нельзя!

Для того, чтобы провести стрелку перетяните мышкой элемент к которому вы проводите стрелку поверх элемента от которого должна идти стрелка и отпустите. Чтобы отменить стрелку между элементами повторите их перемещение.

ът метаоолический инсульт (тканевой дефицит энергии)	Рисунок	VI) Повышенный уровень холестерина и липопротеинов низкой плотности в плазме крови
F) Реологический инсульт (повышение свертываемости крови)		
G) Тромбоэмболический инсульт (транзит тромба из внешнего источника с закупоркой в сосудах головного мозга)		VII) Гипермобильность суставов, чрезмерная растяжимость связок и кожи, резкие повороты шеи

Время ответа: 19.03.2022 13:37:51

Баллы: **3** из 5

Задание ID41 (Задача № 1281535)

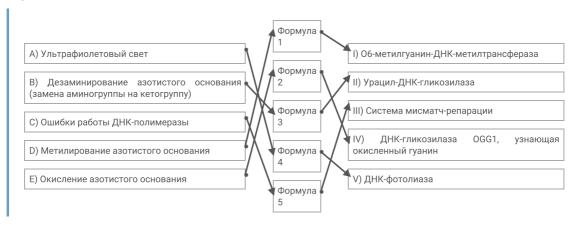
На рисунках показаны повреждения молекул ДНК (в каждом случае изображена только поврежденная часть молекулы), которые возникают под действием различных факторов физической и химической природы:

После данной формулировки задания приведены три столбца элементов для сопоставления:

В левом столбце приведен список причин появления повреждений.

В среднем столбце указаны номера формул (сами формулы приведены выше).

В правом столбце приведен список ферментов или путей репарации.


Сопоставьте каждое повреждение с основной причиной его возникновения (список А-Е) и ферментом (или путем

репарации), ответственным за исправление этого повреждения (список I-V).

Каждый элемент из среднего столбца можно соединить стрелкой <u>только с одним</u> элементом в левом столбце и/или в правом столбце. Каждая стрелка <u>должна быть уникальной</u>, т.е. провести две стрелки от двух элементов среднего столбца к одному и тому же элементу левого (или правого) столбца нельзя!

Для того, чтобы провести стрелку перетяните мышкой элемент к которому вы проводите стрелку поверх элемента от которого должна идти стрелка и отпустите. Чтобы отменить стрелку между элементами повторите их перемещение.

Ответ ученика

Время ответа: 19.03.2022 13:39:29

Баллы: **5** из 5

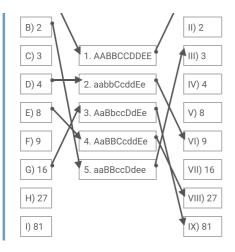
Задание ID43 (Задача № 1281539)

Ниже приведены различные генотипы растений, все гены расположены на разных хромосомах:

- 1. AABBCCDDEE
- 2. aabbCcddEe
- 3. AaBbccDdEe
- 4. AaBBCcddEe
- 5. aaBBccDdee

После данной формулировки задания приведены три столбца элементов для сопоставления:

В левом столбце приведен список количества типов гамет, которое способно образовывать растение (список избыточен – в нем есть лишние значения).

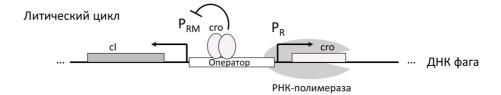

В среднем столбце указаны генотипы растений.

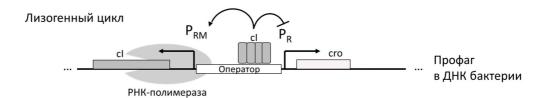
В правом столбце приведен список количества генотипических классов, которые можно получить при самоопылении растения (список избыточен – в нем есть лишние значения).

Соотнесите генотип растения, количество типов гамет, которое данное растение способно образовывать, и количество генотипических классов, которые можно получить при самоопылении этого растения.

Каждый элемент из среднего столбца можно соединить стрелкой <u>только с одним</u> элементом в левом столбце и/или в правом столбце. Каждая стрелка <u>должна быть уникальной</u>, т.е. провести две стрелки от двух элементов среднего столбца к одному и тому же элементу левого (или правого) столбца нельзя!

Для того, чтобы провести стрелку перетяните мышкой элемент к которому вы проводите стрелку поверх элемента от которого должна идти стрелка и отпустите. Чтобы отменить стрелку между элементами повторите их перемещение.


Время ответа: 19.03.2022 13:40:44


Баллы: **5** из 5

Задание ID52 (Задача № 1281552)

Для бактериофага лямбда характерно два типа жизненных циклов – литический, когда фаг активно реплицируется и разрушает клетки кишечной палочки (Escherichia coli), или лизогенный, когда геном фага встраивается в молекулу ДНК клетки бактерии в уникальный локус генома с помощью процесса, называемого сайт-специфической рекомбинацией. На рисунке 1 показана упрощенная схема регуляции экспрессии двух генов бактериофага – cl и cro. В случае литического цикла с промотора P_R экспрессируется ген cro, а также другие гены, необходимые для протекания литического цикла. Белок сго блокирует транскрипцию с промотора P_{RM} (стрелка с тупым концом), связываясь с последовательностью-оператором. В случае лизогенного цикла фаговая ДНК существует в виде профага, встроенного в ДНК бактериальной клетки. При этом активен промотор P_{RM} , с которого экспрессируется ген cl. Белок cl блокирует промотор P_R , также связываясь с оператором. Белок cl дополнительно активирует промотор P_{RM} (стрелка с острым концом), привлекая к нему РНК-полимеразу (в отличие от промотора P_R промотор P_{RM} является слабым и требует дополнительной активации).

Рисунок 1

При заражении фагом лямбда клеток *E. coli*, равномерно покрывающих поверхность чашки Петри, в слое бактерий появляются так называемые бляшки – участки, где рост бактерий нарушен. Обычно при заражении культуры *E. coli* фагом дикого типа (WT) образуются в основном мутные бляшки (тип 1 на рисунке 2A, чашка A1), и меньшее количество полностью прозрачных бляшек (тип 2 на рисунке 2A, чашка A1). Если из бактерий в мутных бляшках (тип 1) вырастить культуру, а потом добавить к такой культуре фаг дикого типа, то заметных изменений не наблюдается (рисунок 2Б, чашка Б1).

Ученые обнаружили два мутанта фага лямбда — X и Y, которые образуют только прозрачные колонии при заражении клеток *E. coli* (рисунок 2A, чашки A2 и A3). Ученым удалось установить, что в этих штаммах содержится по одной точечной мутации (эти эксперименты здесь не описаны). При заражении бактерий, выращенных из бляшек типа 1 (полученных при заражении фагом дикого типа), фагом X заметных изменений не наблюдается (рисунок 2Б, чашка Б2). Однако если в таком эксперименте использовать мутантный фаг Y, то на чашке появляются прозрачные бляшки (рисунок 2Б, чашка Б3).

Рисунок 2 Культура E.coli E.coli + WT φar λ E.coli + фаг λ (мутант X) E.coli + фаг λ (мутант Y) A2 **A3 A1** (1) Α (2) E.coli (1) + WT φar λ E.coli (1) + фаг λ (мутант X) E.coli (1) + фаг \(\lambda\) (мутант \(\text{Y}\)) Б1 Б2 Б3 Б

Ответьте на следующие подвопросы:

- 1) Какой тип жизненного цикла преобладает у фагов в мутных бляшках (тип 1)?
- 2) Какой тип жизненного цикла преобладает у фагов в прозрачных бляшках (тип 2)?
- 3) Почему фаги дикого типа (WT) не дают бляшек на чашке с бактериями, выращенными из мутных бляшек (тип 1)?
- 4) Какими являются мутации в штаммах X и Y доминантными или рецессивными? Объясните ваш ответ.
- 5) В какой (каких) последовательностях могла произойти мутация у штамма X? Считайте, что мутация делает последовательность, в которой она возникла, полностью нефункциональной. Объясните ваш ответ.
- 6) В какой (каких) последовательностях могла произойти мутация у штамма Y? Считайте, что мутация делает последовательность, в которой она возникла, полностью нефункциональной. Объясните ваш ответ.

При внесении ответа в поле ниже, пожалуйста, сохраняйте нумерацию подвопросов на которые вы даете ответы!

Ответ ученика

- 1) Лизогенный, так как некоторые бактерии остаются живыми, что и обеспечивает мутность бляшек
- 2) Литический, поскольку бактерии уничтожаются полностью (или почти полностью), что позволяет визуально детектировать прозрачность бляшек
- 3) В геномах бактерий из мутных бляшек присутствует встоенный геном фага для обеспеченния лизогенного цикла. Значит, в клетке постоянно присутствует белок cl, авляющий транскрипцию генов литического цикла. Поэтому, когда новый бактериофаг проникает в клетку бактерии, он не может произвести лизис, поскольку в клетке бактерии уже присутствует ингибитор литического цикла cl. Таким образом, лизиса не происходит и бляшки не образуются.
- 4) X рецессивные, поскольку при добавлении в экспериментальную систему фага дикого типа мы видим проявление как у дикого типа. Y доминантные, поскольку при добавлении фагов дикого типа не видим проявление доминантного фентипа.
- 5) Последовательность белка cl. Без него невозможно обеспечение лизогении, поэтому на рисунке A2 мы видим прозрачные бляшки результат лизиса. При этом, когда мутант X заражает бактерию, в которой уже присутствует белок cl, лизис блокируется как и в случае добавления фагов дикого типа.

Последовательность промотора Prm. Аналогично выше описанному случаю. Эффект дает cl, присутствующий в заражаемой бактерии

6) Последовательност оператора, с которой связывается cl. Тогда после заражения фагом Y присутствующий белок cl не повлияет на экспрессию генов нового фага, поскольку не сможет связаться с последовательностью оператора. При этом, даже если в таком случае белок cro не сможет связаться с оператором, фаг все равно будет оставаться в состоянии литического цикла, поскольку промотор P сильный, а промотор Prm не сможет активироваться присутствующим cl.

Время ответа: 19.03.2022 14:15:44

Баллы: 10 из 10

Задание ID54 (Задача № 1281554)

Цвет шерсти у млекопитающих связан с работой фермента тирозиназы, который катализирует одну из реакций, необходимую для превращения тирозина в пигмент меланин. Тирозиназа накапливается в особых клеточных везикулах, меланосомах, где и происходит синтез пигмента. В свою очередь меланосомы образуются в клетках меланобластах, которые в процессе эмбрионального развития мигрируют из нервного гребня в эпидермис кожи, где превращаются в меланоциты – клетки, определяющие цвет кожи и шерсти.

У американских норок (Neovison vison) описан ген Н, продукт которого играет ключевую роль в формировании меланобластов и миграции их из нервного гребня. Ген имеет два аллеля. Аллель дикого типа Н определяет нормальное развитие меланобластов, и гомозиготы по данному аллею имеют коричневую шерсть (фенотип дикого типа). У обладателей мутантного аллеля h нарушены биогенез и миграция меланобластов, в результате чего шерсть остается белой. Данный аллель кодоминирует по отношению к аллелю дикого типа. Гетерозиготы имеют пегий окрас (мелкие белые пятна на коричневом фоне). Кроме того, ген обладает плейотропным эффектом. Гомозиготы по аллелю h глухие, гетерозиготы и гомозиготы по аллелю H имеют нормальный слух.

Продукт другого гена М регулирует образование и перемещение меланосом в клетке. Доминантный аллель данного гена определяет фенотип дикого типа. Продукт рецессивного аллеля m работает менее эффективно, в результате чего образуется меньше меланосом и животные имеют светло-коричневый мех.

На звероферме разводят две чистые линии норок, фенотип которых связан с действием описанных генов. Норки линии Мойл светло-коричневые. Норки линии Хедлунд белые и глухие.

Ответьте на следующие подвопросы:

- 1) Какой генотип имеют норки линий Мойл и Хедлунд, если каждая из них несет мутацию только в одном из описанных генов?
- 2) Какие генотип и фенотип по признакам окраса шерсти и наличия слуха будут иметь гибриды F1 от скрещивания данных чистых линий?
- 3) В каком соотношении в F2 можно ожидать рождение глухих детенышей и детенышей с нормальным слухом?
- 4) Сколько фенотипических классов по признаку окраса шерсти можно ожидать в F2? Перечислите все возможные фенотипы и соответствующие им генотипы.
- 5) Какое расщепление можно ожидать в F2 одновременно по двум признакам наличие слуха и цвет шерсти?

При внесении ответа в поле ниже, пожалуйста, сохраняйте нумерацию подвопросов на которые вы даете ответы!

Ответ ученика

Хедлунд - Х, Мойл - Мо

1) Поскольку это чистые линии норок и мутация ест только в одном гене, генотип X - MMhh (так как они белые и глухие), Мо - mmHH (так как имеют светло-коричневый фенотип)

P: MMhh * mmHH

F1: MmHh (пегие, с нормальным слухом) * MmHh

F2:

3 М-НН ликий тип

6 M-Hh пегие нормальный слух

3 M-hh белые глухие

1 mmHH светло-коричневые нормальный слух

2 mmHh светло-пегие нормальный слых

1 mmhh белые глухие

- 2) Пегие с нормальным слухом, так как по Н гетерозиготы и присутствует доминантная аллель М, дающая полную насыщенность окраски
- 3) По сути нам интересно расщеппление по гену Н. НН и Нh имеют нормальный слух, тогда расщепление 3:1=нормальный слух : глухие

4) 5 фенотипических классов, описание фенотипов и соответствующие генотипы смотрите выше в схеме скрещивания

5) 6:4:2:1 = дикий тип : быле глухие : светло-пегие нормальный слух : светло-коричневые нормальный слух. См.схемы скрещивания выше

Время ответа: 19.03.2022 13:53:17

Баллы: 9 из 10