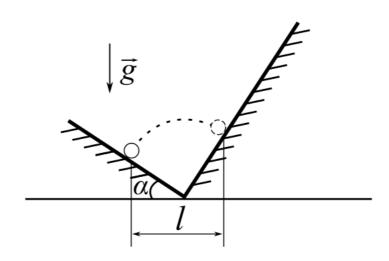
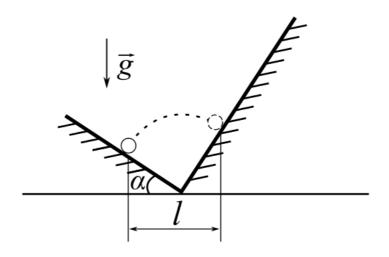
Отборочный этап 2025/26


Задачи олимпиады: Физика 11 класс (3 попытка)

Задача 1

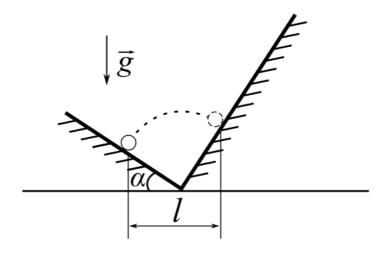
Задача 1 #1 ID 5102

Шарик движется в однородном поле тяжести по одной траектории туда и обратно между двумя взаимно перпендикулярными полуплоскостями, абсолютно упруго ударяясь о них (см. рис.). Угол наклона одной полуплоскости к горизонту 10° , расстояние по горизонтали между точками соударения шарика с полуплоскостями $l=20~[{\rm cm}].$


Найдите модуль минимальной скорости шарика в процессе полёта. Ответ приведите в $[{\rm M/c}]$ с округлением до десятых. Ускорение свободного падения $10~[{\rm M/c}^2]$.

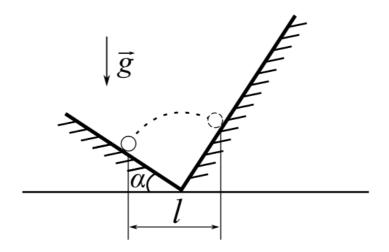
Задача 1 #2 1D 5103

Шарик движется в однородном поле тяжести по одной траектории туда и обратно между двумя взаимно перпендикулярными полуплоскостями, абсолютно упруго ударяясь о них (см. рис.). Угол наклона одной полуплоскости к горизонту 20° , расстояние по горизонтали между точками соударения шарика с полуплоскостями $l=40~[{\rm cm}].$


Найдите модуль минимальной скорости шарика в процессе полёта. Ответ приведите в $[{\rm M/c}]$ с округлением до десятых. Ускорение свободного падения $10~[{\rm M/c}^2]$.

Задача 1 #3 10 5104

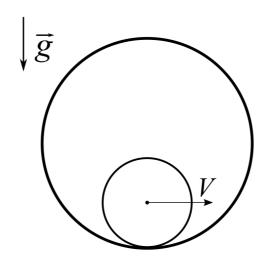
Шарик движется в однородном поле тяжести по одной траектории туда и обратно между двумя взаимно перпендикулярными полуплоскостями, абсолютно упруго ударяясь о них (см. рис.). Угол наклона одной полуплоскости к горизонту 30° , расстояние по горизонтали между точками соударения шарика с полуплоскостями $l=60~[{\rm cm}].$


Найдите модуль минимальной скорости шарика в процессе полёта. Ответ приведите в $[{\rm M/c}]$ с округлением до десятых. Ускорение свободного падения $10~[{\rm M/c}^2]$.

Задача 1 #4 1D 5105

Шарик движется в однородном поле тяжести по одной траектории туда и обратно между двумя взаимно перпендикулярными полуплоскостями, абсолютно упруго ударяясь о них (см. рис.). Угол наклона одной полуплоскости к горизонту 40° , расстояние по горизонтали между точками соударения шарика с полуплоскостями $l=80~[{\rm cm}].$

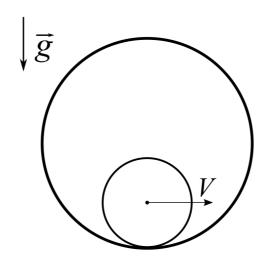
Найдите модуль минимальной скорости шарика в процессе полёта. Ответ приведите в $[{\rm M/c}]$ с округлением до десятых. Ускорение свободного падения $10~[{\rm M/c}^2]$.



Задача 2

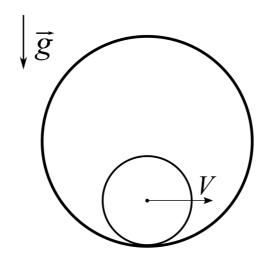
Задача 2 #5 1D 5106

Однородный обруч катится без проскальзывания по внутренней поверхности закреплённого цилиндра (см. рис.) так, что центр масс обруча движется по окружности в вертикальной плоскости. Модуль максимального центростремительного ускорения центра масс обруча в 50 раз больше модуля минимального.


Найдите модуль максимального центростремительного ускорения центра масс обруча. Ответ приведите в $[{\rm m/c}^2]$ с округлением до целого значения. Силу сопротивления воздуха считайте пренебрежимо малой. Ускорение свободного падения $10~[{\rm m/c}^2]$.

Задача 2 #6 1D 5107

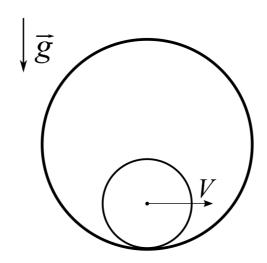
Однородный обруч катится без проскальзывания по внутренней поверхности закреплённого цилиндра (см. рис.) так, что центр масс обруча движется по окружности в вертикальной плоскости. Модуль максимального центростремительного ускорения центра масс обруча в 5 раз больше модуля минимального.


Найдите модуль максимального центростремительного ускорения центра масс обруча. Ответ приведите в $[{\rm m/c}^2]$ с округлением до целого значения. Силу сопротивления воздуха считайте пренебрежимо малой. Ускорение свободного падения $10~[{\rm m/c}^2]$.

Задача 2 #7 1D 5108

Однородный обруч катится без проскальзывания по внутренней поверхности закреплённого цилиндра (см. рис.) так, что центр масс обруча движется по окружности в вертикальной плоскости. Модуль максимального центростремительного ускорения центра масс обруча в 3 раза больше модуля минимального.

Найдите модуль максимального центростремительного ускорения центра масс обруча. Ответ приведите в $[{\rm m/c}^2]$ с округлением до целого значения. Силу сопротивления воздуха считайте пренебрежимо малой. Ускорение свободного падения $10~[{\rm m/c}^2]$.



999976295108

Задача 2 #8 10 5109

Однородный обруч катится без проскальзывания по внутренней поверхности закреплённого цилиндра (см. рис.) так, что центр масс обруча движется по окружности в вертикальной плоскости. Модуль максимального центростремительного ускорения центра масс обруча в 2 раза больше модуля минимального.

Найдите модуль максимального центростремительного ускорения центра масс обруча. Ответ приведите в $[{\rm M/c}^2]$ с округлением до целого значения. Силу сопротивления воздуха считайте пренебрежимо малой. Ускорение свободного падения $10~[{\rm M/c}^2]$.

Задача 3

Задача 3 #9 1D 5110

Тепловоз провозит железнодорожную платформу с постоянной скоростью $1,8~[{\rm M/c}]$ под неподвижным бункером, из которого на платформу насыпается песок. Ежесекундно из бункера на платформу загружается 0,5 тонны песка. Высота бункера над платформой $1,8~[{\rm M}]$. Длина платформы $12~[{\rm M}]$.

Найдите теплоту, которая выделится при провозе платформы под бункером вследствие погрузки песка. Песок ложится на дно платформы ровным слоем, толщина которого мала по сравнению с высотой бункера над платформой. Весь песок, упавший на платформу из бункера, остаётся на платформе. Ответ приведите в $[\kappa \not \perp]$ с округлением до целого числа. Ускорение свободного падения $10 \ [\text{м}/\text{c}^2]$.

Задача 3 #10 10 5111

Тепловоз провозит железнодорожную платформу с постоянной скоростью $2,1~[{\rm M/c}]$ под неподвижным бункером, из которого на платформу насыпается песок. Ежесекундно из бункера на платформу загружается 0,6 тонны песка. Высота бункера над платформой $1,9~[{\rm M}]$. Длина платформы $13~[{\rm M}]$.

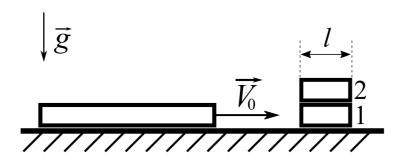
Задача 3 #11 10 5112

Тепловоз провозит железнодорожную платформу с постоянной скоростью $2,3~[{\rm M/c}]$ под неподвижным бункером, из которого на платформу насыпается песок. Ежесекундно из бункера на платформу загружается 0,7 тонны песка. Высота бункера над платформой $2~[{\rm M}]$. Длина платформы $14~[{\rm M}]$.

Найдите теплоту, которая выделится при провозе платформы под бункером вследствие погрузки песка. Песок ложится на дно платформы ровным слоем, толщина которого мала по сравнению с высотой бункера над платформой. Весь песок, упавший на платформу из бункера, остаётся на платформе. Ответ приведите в $[\kappa \not \perp]$ с округлением до целого числа. Ускорение свободного падения $10 \ [\text{м/c}^2]$.

Задача 3 #12 10 5113

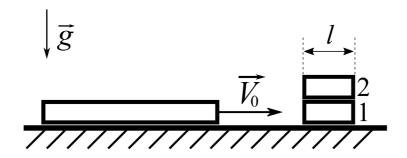
Тепловоз провозит железнодорожную платформу с постоянной скоростью $2,4~[{\rm M/c}]$ под неподвижным бункером, из которого на платформу насыпается песок. Ежесекундно из бункера на платформу загружается 0,8 тонны песка. Высота бункера над платформой $2,1~[{\rm M}]$. Длина платформы $15~[{\rm M}]$.


Найдите теплоту, которая выделится при провозе платформы под бункером вследствие погрузки песка. Песок ложится на дно платформы ровным слоем, толщина которого мала по сравнению с высотой бункера над платформой. Весь песок, упавший на платформу из бункера, остаётся на платформе. Ответ приведите в $[\kappa \not \perp]$ с округлением до целого числа. Ускорение свободного падения $10 \ [\text{м/c}^2]$.

Задача 4

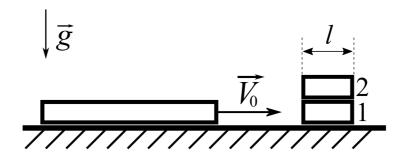
Задача 4 #13 10 5114

Длинная доска массой $9\ [\mathrm{K}\Gamma]$ движется поступательно по горизонтальной гладкой поверхности со скоростью $1\ [\mathrm{M/c}]$ и абсолютно неупруго сталкивается с покоящимся однородным бруском $1\ (\mathrm{cm.}\ \mathrm{puc.})$ длиной $25\ \mathrm{cm}$ и массой $1\ [\mathrm{K}\Gamma]$. На бруске $1\ \mathrm{лежит}$ такой же брусок 2. Трение между брусками пренебрежимо мало. Высота брусков и доски одинакова. Коэффициент трения между бруском $2\ \mathrm{u}$ доской $0\ \mathrm{,}\ 1$.


Найдите перемещение бруска 2 относительно доски за время с момента столкновения доски с нижним бруском до момента прекращения относительного движения бруска 2 и доски. Ответ приведите в $[{\rm cm}]$ с округлением до целого числа. Ускорение свободного падения $10~[{\rm m/c}^2]$.

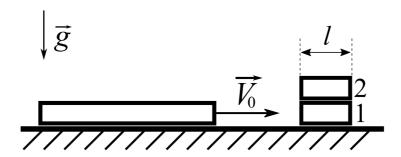
Задача 4 #14 ID 5115

Длинная доска массой $8\ [\mathrm{K}\Gamma]$ движется поступательно по горизонтальной гладкой поверхности со скоростью $1,2\ [\mathrm{M/c}]$ и абсолютно неупруго сталкивается с покоящимся однородным бруском 1 (см. рис.) длиной $20\ \mathrm{cm}$ и массой $0,9\ [\mathrm{K}\Gamma]$. На бруске 1 лежит такой же брусок 2. Трение между брусками пренебрежимо мало. Высота брусков и доски одинакова. Коэффициент трения между бруском 2 и доской 0,2.


Найдите перемещение бруска 2 относительно доски за время с момента столкновения доски с нижним бруском до момента прекращения относительного движения бруска 2 и доски. Ответ приведите в $[{\rm cm}]$ с округлением до целого числа. Ускорение свободного падения $10~[{\rm m/c}^2]$.

Задача 4 #15 10 5116

Длинная доска массой $5~[{\rm K}\Gamma]$ движется поступательно по горизонтальной гладкой поверхности со скоростью $1,4~[{\rm M/c}]$ и абсолютно неупруго сталкивается с покоящимся однородным бруском 1 (см. рис.) длиной $15~{\rm cm}$ и массой $0,8~[{\rm K}\Gamma]$. На бруске $1~{\rm лежит}$ такой же брусок 2. Трение между брусками пренебрежимо мало. Высота брусков и доски одинакова. Коэффициент трения между бруском 2 и доской 0,3.


Найдите перемещение бруска 2 относительно доски за время с момента столкновения доски с нижним бруском до момента прекращения относительного движения бруска 2 и доски. Ответ приведите в $[{\rm cm}]$ с округлением до целого числа. Ускорение свободного падения $10~[{\rm m/c}^2]$.

Задача 4 #16 1D 5117

Длинная доска массой $4\ [\mathrm{Kr}]$ движется поступательно по горизонтальной гладкой поверхности со скоростью $1,2\ [\mathrm{M/c}]$ и абсолютно неупруго сталкивается с покоящимся однородным бруском 1 (см. рис.) длиной $10\ \mathrm{cm}$ и массой $0,7\ [\mathrm{Kr}]$. На бруске 1 лежит такой же брусок 2. Трение между брусками пренебрежимо мало. Высота брусков и доски одинакова. Коэффициент трения между бруском 2 и доской 0,4.

Найдите перемещение бруска 2 относительно доски за время с момента столкновения доски с нижним бруском до момента прекращения относительного движения бруска 2 и доски. Ответ приведите в $[{\rm cm}]$ с округлением до целого числа. Ускорение свободного падения $10~[{\rm m/c}^2]$.

Задача 5

Задача 5 #17 ID 5118

Герметичный цилиндрический сосуд с вертикальными гладкими стенками разделён на две части равного объёма лёгким поршнем, который может скользить в сосуде без трения. В верхней части сосуда находится 1,1 моль гелия при температуре $100\,^{\circ}\text{C}$, в нижней части — $1\,$ моль гелия, вода и водяной пар при температуре $100\,^{\circ}\text{C}$. Температуру в цилиндре медленно уменьшили почти до $0\,^{\circ}\text{C}$.

Найдите массу сконденсировавшегося водяного пара. Давление водяного пара при конечной температуре считайте пренебрежимо малым. Молярная масса воды 18 г/моль. Ответ приведите в $[\Gamma]$ с точностью до десятых. Начальный и конечный объёмы воды много меньше объёма сосуда.

Задача 5 #18 ID 5119

Герметичный цилиндрический сосуд с вертикальными гладкими стенками разделён на две части равного объёма лёгким поршнем, который может скользить в сосуде без трения. В верхней части сосуда находится 1,3 моль гелия при температуре $100\,^{\circ}$ С, в нижней части — $1,1\,$ моль гелия, вода и водяной пар при температуре $100\,^{\circ}$ С. Температуру в цилиндре медленно уменьшили почти до $0\,^{\circ}$ С.

Найдите массу сконденсировавшегося водяного пара. Давление водяного пара при конечной температуре считайте пренебрежимо малым. Молярная масса воды 18 $\Gamma/\text{моль}$. Ответ приведите в $[\Gamma]$ с точностью до десятых. Начальный и конечный объёмы воды много меньше объёма сосуда.

Задача 5 #19 1D 5120

Герметичный цилиндрический сосуд с вертикальными гладкими стенками разделён на две части равного объёма лёгким поршнем, который может скользить в сосуде без трения. В верхней части сосуда находится 1,7 моль гелия при температуре $100\,^{\circ}$ С, в нижней части — $1,4\,$ моль гелия, вода и водяной пар при температуре $100\,^{\circ}$ С. Температуру в цилиндре медленно уменьшили почти до $0\,^{\circ}$ С.

Найдите массу сконденсировавшегося водяного пара. Давление водяного пара при конечной температуре считайте пренебрежимо малым. Молярная масса воды 18 г/моль. Ответ приведите в [r] с точностью до десятых. Начальный и конечный объёмы воды много меньше объёма сосуда.

Задача 5 #20 1D 5121

Герметичный цилиндрический сосуд с вертикальными гладкими стенками разделён на две части равного объёма лёгким поршнем, который может скользить в сосуде без трения. В верхней части сосуда находится 1,9 моль гелия при температуре $100\,^{\circ}$ С, в нижней части — $1,5\,$ моль гелия, вода и водяной пар при температуре $100\,^{\circ}$ С. Температуру в цилиндре медленно уменьшили почти до $0\,^{\circ}$ С.

Найдите массу сконденсировавшегося водяного пара. Давление водяного пара при конечной температуре считайте пренебрежимо малым. Молярная масса воды 18 г/моль. Ответ приведите в $[\Gamma]$ с точностью до десятых. Начальный и конечный объёмы воды много меньше объёма сосуда.

Задача 6

Задача 6 #21 ID 5122

Герметичный цилиндрический сосуд разделен на две части легким подвижным поршнем, который может скользить внутри сосуда без трения. В одной части сосуда находится один моль гелия, объём которого составляет 10% объёма сосуда, а в другой один моль аргона. Гелию квазистатически подводят теплоту, температуру аргона поддерживают постоянной.

Найдите модуль приращения теплоёмкости гелия при увеличении объёма гелия от 10% до 20% объёма сосуда. Универсальная газовая постоянная $R=8,31~[\mbox{Дж}/(\mbox{моль}\cdot\mbox{K})].$ Теплообменом между гелием и аргоном пренебрегите. Объём поршня мал, по сравнению с объёмом сосуда. Ответ приведите в $[\mbox{Дж}/(\mbox{моль}\cdot\mbox{K})]$ с округлением до десятых.

Задача 6 #22 ID 5123

Герметичный цилиндрический сосуд разделен на две части легким подвижным поршнем, который может скользить внутри сосуда без трения. В одной части сосуда находится один моль гелия, объём которого составляет 15% объёма сосуда, а в другой один моль аргона. Гелию квазистатически подводят теплоту, температуру аргона поддерживают постоянной.

Найдите модуль приращения теплоёмкости гелия при увеличении объёма гелия от 15% до 30% объёма сосуда. Универсальная газовая постоянная $R=8,31~[\mbox{Дж}/(\mbox{моль}\cdot\mbox{K})].$ Теплообменом между гелием и аргоном пренебрегите. Объём поршня мал, по сравнению с объёмом сосуда. Ответ приведите в $[\mbox{Дж}/(\mbox{моль}\cdot\mbox{K})]$ с округлением до десятых.

Задача 6 #23 1D 5124

Герметичный цилиндрический сосуд разделен на две части легким подвижным поршнем, который может скользить внутри сосуда без трения. В одной части сосуда находится один моль гелия, объём которого составляет 20% объёма сосуда, а в другой один моль аргона. Гелию квазистатически подводят теплоту, температуру аргона поддерживают постоянной.

Найдите модуль приращения теплоёмкости гелия при увеличении объёма гелия от 20% до 40% объёма сосуда. Универсальная газовая постоянная $R=8,31~[\mbox{Дж}/(\mbox{моль}\cdot\mbox{K})].$ Теплообменом между гелием и аргоном пренебрегите. Объём поршня мал, по сравнению с объёмом сосуда. Ответ приведите в $[\mbox{Дж}/(\mbox{моль}\cdot\mbox{K})]$ с округлением до десятых.

Задача 6 #24 ID 5125

Герметичный цилиндрический сосуд разделен на две части легким подвижным поршнем, который может скользить внутри сосуда без трения. В одной части сосуда находится один моль гелия, объём которого составляет 30% объёма сосуда, а в другой один моль аргона. Гелию квазистатически подводят теплоту, температуру аргона поддерживают постоянной.

Найдите модуль приращения теплоёмкости гелия при увеличении объёма гелия от 30% до 60% объёма сосуда. Универсальная газовая постоянная $R=8,31~[\mbox{Дж}/(\mbox{моль}\cdot\mbox{K})].$ Теплообменом между гелием и аргоном пренебрегите. Объём поршня мал, по сравнению с объёмом сосуда. Ответ приведите в $[\mbox{Дж}/(\mbox{моль}\cdot\mbox{K})]$ с округлением до десятых.

Задача 7

Задача 7 #25 1D 5126

Нерелятивистский протон, движущийся в однородном магнитном поле, абсолютно упруго сталкивается с неподвижным нейтроном. В результате столкновения вектор скорости протона поворачивается на угол 20° .

Найдите отношение радиуса кривизны траектории протона непосредственно перед столкновением к радиусу кривизны начального участка его траектории после столкновения. Протон до и после столкновения движется в плоскости, перпендикулярной линиям индукции магнитного поля. Массы протона и нейтрона считайте равными. Ответ приведите с округлением до десятых. Ядерная реакция при таком ударе не состоялась. Действие магнитной силы на протон в процессе соударения считайте пренебрежимо малым.

Задача 7 #26 1D 5127

Нерелятивистский протон, движущийся в однородном магнитном поле, абсолютно упруго сталкивается с неподвижным нейтроном. В результате столкновения вектор скорости протона поворачивается на угол 40° .

Найдите отношение радиуса кривизны траектории протона непосредственно перед столкновением к радиусу кривизны начального участка его траектории после столкновения. Протон до и после столкновения движется в плоскости, перпендикулярной линиям индукции магнитного поля. Массы протона и нейтрона считайте равными. Ответ приведите с округлением до десятых. Ядерная реакция при таком ударе не состоялась. Действие магнитной силы на протон в процессе соударения считайте пренебрежимо малым.

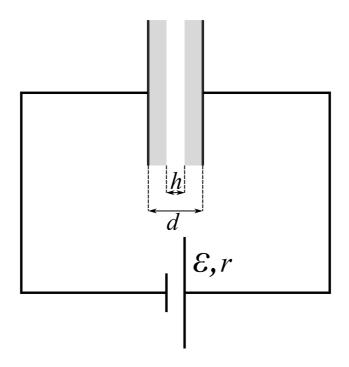
Задача 7 #27 ID 5128

Нерелятивистский протон, движущийся в однородном магнитном поле, абсолютно упруго сталкивается с неподвижным нейтроном. В результате столкновения вектор скорости протона поворачивается на угол 50° .

Найдите отношение радиуса кривизны траектории протона непосредственно перед столкновением к радиусу кривизны начального участка его траектории после столкновения. Протон до и после столкновения движется в плоскости, перпендикулярной линиям индукции магнитного поля. Массы протона и нейтрона считайте равными. Ответ приведите с округлением до десятых. Ядерная реакция при таком ударе не состоялась. Действие магнитной силы на протон в процессе соударения считайте пренебрежимо малым.

Задача 7 #28 1D 5129

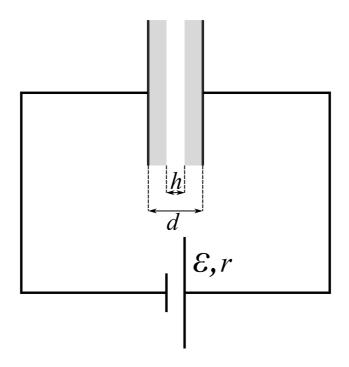
Нерелятивистский протон, движущийся в однородном магнитном поле, абсолютно упруго сталкивается с неподвижным нейтроном. В результате столкновения вектор скорости протона поворачивается на угол 65° .


Найдите отношение радиуса кривизны траектории протона непосредственно перед столкновением к радиусу кривизны начального участка его траектории после столкновения. Протон до и после столкновения движется в плоскости, перпендикулярной линиям индукции магнитного поля. Массы протона и нейтрона считайте равными. Ответ приведите с округлением до десятых. Ядерная реакция при таком ударе не состоялась. Действие магнитной силы на протон в процессе соударения считайте пренебрежимо малым.

Задача 8

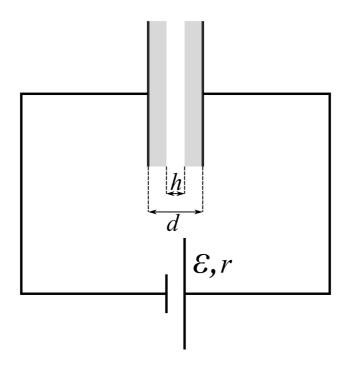
Задача 8 #29 ID 5130

В плоский конденсатор, заряженный до напряжения 2 [B], вставляют (см. рис.) две пластины из диэлектрика ($\varepsilon=11$) таким образом, что между ними остается небольшой зазор шириной $h=0,6\cdot d$, где d=13 $[{\rm MM}]$ – расстояние между обкладками конденсатора. Затем конденсатор подключают к батарее с ЭДС \mathcal{E} =2 [B] и небольшим внутренним сопротивлением r. Через некоторое время сила тока в цепи становится практически равной нулю.


Найдите напряжённость электрического поля в зазоре после подключения конденсатора к батарее. Ответ приведите в $[B/{\rm M}]$ с округлением до целого числа.

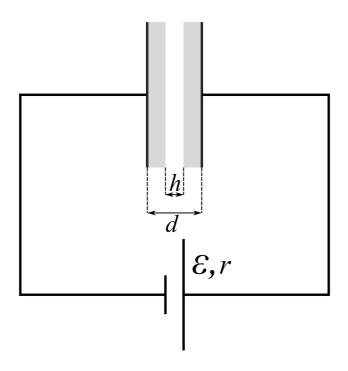
Задача 8 #30 1D 5131

В плоский конденсатор, заряженный до напряжения 3 [B], вставляют (см. рис.) две пластины из диэлектрика ($\varepsilon=10$) таким образом, что между ними остается небольшой зазор шириной $h=0,5\cdot d$, где d=12 $[{\rm MM}]$ – расстояние между обкладками конденсатора. Затем конденсатор подключают к батарее с ЭДС \mathcal{E} =3 [B] и небольшим внутренним сопротивлением r. Через некоторое время сила тока в цепи становится практически равной нулю.


Найдите напряжённость электрического поля в зазоре после подключения конденсатора к батарее. Ответ приведите в $[B/{\rm M}]$ с округлением до целого числа.

Задача 8 #31 1D 5132

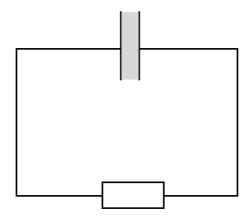
В плоский конденсатор, заряженный до напряжения 4 [B], вставляют (см. рис.) две пластины из диэлектрика ($\varepsilon=5$) таким образом, что между ними остается небольшой зазор шириной $h=0,4\cdot d$, где d=11 $[{\rm MM}]$ – расстояние между обкладками конденсатора. Затем конденсатор подключают к батарее с ЭДС \mathcal{E} =4 [B] и небольшим внутренним сопротивлением r. Через некоторое время сила тока в цепи становится практически равной нулю.


Найдите напряжённость электрического поля в зазоре после подключения конденсатора к батарее. Ответ приведите в $[B/{\tt M}]$ с округлением до целого числа.

Задача 8 #32 1D 5133

В плоский конденсатор, заряженный до напряжения 5 [B], вставляют (см. рис.) две пластины из диэлектрика ($\varepsilon=5$) таким образом, что между ними остается небольшой зазор шириной $h=0,3\cdot d$, где d=10 $[{\rm MM}]$ – расстояние между обкладками конденсатора. Затем конденсатор подключают к батарее с ЭДС \mathcal{E} =5 [B] и небольшим внутренним сопротивлением r. Через некоторое время сила тока в цепи становится практически равной нулю.

Найдите напряжённость электрического поля в зазоре после подключения конденсатора к батарее. Ответ приведите в $[B/{\rm M}]$ с округлением до целого числа.

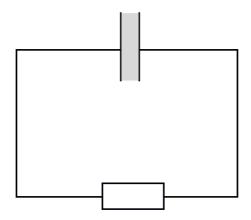

Задача 9

Задача 9 #33 1D 5134

Из-за длительного хранения изменились характеристики диэлектрика $(\varepsilon=2)$, которым заполнен плоский конденсатор с круглыми обкладками: увеличилась электропроводность диэлектрика, диэлектрическая проницаемость возросла в 1,5 раза. В результате постоянная времени разряда $\tau=0,5$ c конденсатора через сопротивление (см. рис.) уменьшилась в 1,5 раза.

Определите удельное сопротивление диэлектрика, которым заполнен конденсатор, после длительного хранения. Электропроводностью диэлектрика в исходном состоянии пренебрегите. Ответ приведите в $[\Gamma 0 \mathbf{M} \cdot \mathbf{M}]$ с округлением до десятых. Электрическая постоянная $\epsilon_0 = 8,85 \cdot 10^{-12}$ $[\Phi/\mathbf{M}]$. Краевыми эффектами пренебрегите.

Указание: постоянная времени разряда конденсатора au=RC, где C — ёмкость конденсатора, R — полное сопротивление цепи, в которой исследуется процесс разрядки конденсатора.

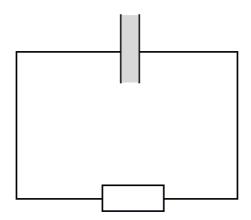


Задача 9 #34 1D 5135

Из-за длительного хранения изменились характеристики диэлектрика $(\varepsilon=3)$, которым заполнен плоский конденсатор с круглыми обкладками: увеличилась электропроводность диэлектрика, диэлектрическая проницаемость возросла в 2 раза. В результате постоянная времени разряда $\tau=1$ c конденсатора через сопротивление (см. рис.) уменьшилась в 1,1 раза.

Определите удельное сопротивление диэлектрика, которым заполнен конденсатор, после длительного хранения. Электропроводностью диэлектрика в исходном состоянии пренебрегите. Ответ приведите в $[\Gamma 0 \mathbf{M} \cdot \mathbf{M}]$ с округлением до десятых. Электрическая постоянная $\epsilon_0 = 8,85 \cdot 10^{-12}$ $[\Phi/\mathbf{M}]$. Краевыми эффектами пренебрегите.

Указание: постоянная времени разряда конденсатора au=RC, где C – ёмкость конденсатора, R – полное сопротивление цепи, в которой исследуется процесс разрядки конденсатора.

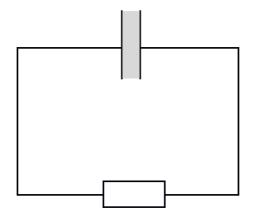


Задача 9 #35 1D 5136

Из-за длительного хранения изменились характеристики диэлектрика $(\varepsilon=4)$, которым заполнен плоский конденсатор с круглыми обкладками: увеличилась электропроводность диэлектрика, диэлектрическая проницаемость возросла в 2,5 раза. В результате постоянная времени разряда $\tau=1,5$ c конденсатора через сопротивление (см. рис.) уменьшилась в 3 раза.

Определите удельное сопротивление диэлектрика, которым заполнен конденсатор, после длительного хранения. Электропроводностью диэлектрика в исходном состоянии пренебрегите. Ответ приведите в $[\Gamma 0 \mathbf{M} \cdot \mathbf{M}]$ с округлением до десятых. Электрическая постоянная $\epsilon_0 = 8,85 \cdot 10^{-12}$ $[\Phi/\mathbf{M}]$. Краевыми эффектами пренебрегите.

Указание: постоянная времени разряда конденсатора au=RC, где C – ёмкость конденсатора, R – полное сопротивление цепи, в которой исследуется процесс разрядки конденсатора.

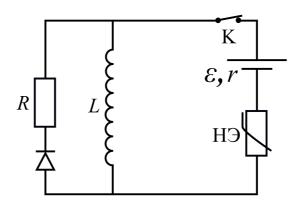


Задача 9 #36 10 5137

Из-за длительного хранения изменились характеристики диэлектрика $(\varepsilon=5)$, которым заполнен плоский конденсатор с круглыми обкладками: увеличилась электропроводность диэлектрика, диэлектрическая проницаемость возросла в 3 раза. В результате постоянная времени разряда $\tau=2$ c конденсатора через сопротивление (см. рис.) уменьшилась в 2 раза.

Определите удельное сопротивление диэлектрика, которым заполнен конденсатор, после длительного хранения. Электропроводностью диэлектрика в исходном состоянии пренебрегите. Ответ приведите в $[\Gamma 0 \mathbf{M} \cdot \mathbf{M}]$ с округлением до десятых. Электрическая постоянная $\epsilon_0 = 8,85 \cdot 10^{-12}$ $[\Phi/\mathbf{M}]$. Краевыми эффектами пренебрегите.

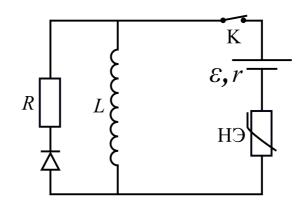
Указание: постоянная времени разряда конденсатора au=RC, где C — ёмкость конденсатора, R — полное сопротивление цепи, в которой исследуется процесс разрядки конденсатора.



Задача 10

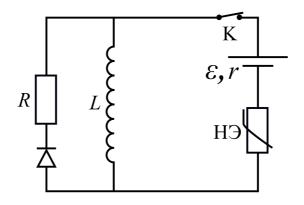
Задача 10 #37 ID 5138

В электрическую цепь, схема которой представлена на рисунке, подключен нелинейный элемент НЭ, вольтамперная характеристика которого имеет вид $U=\alpha I^2$, где $\alpha=0,9$ $[{\rm B/A}^2]$, ЭДС источника и его внутреннее сопротивление равны соответственно 12 $[{\rm B}]$ и 1 $[{\rm OM}]$, R=2 $[{\rm OM}]$, L=50 $[{\rm M}\Gamma{\rm H}]$. Ключ замыкают. Через некоторое время сила тока в цепи практически перестаёт изменяться. Ключ размыкают.


Найдите заряд, протекший через сопротивление R после размыкания ключа. Ответ приведите в $[{\rm MK}{\rm \Lambda}]$ с округлением до целых. Сопротивление диода в прямом направлении много меньше R, в обратном – бесконечно велико.

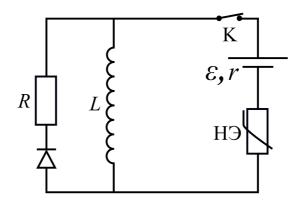
Задача 10 #38 1D 5139

В электрическую цепь, схема которой представлена на рисунке, подключен нелинейный элемент НЭ, вольтамперная характеристика которого имеет вид $U=\alpha I^2$, где $\alpha=1,1$ $[\mathrm{B/A}^2]$, ЭДС источника и его внутреннее сопротивление равны соответственно 24 $[\mathrm{B}]$ и 1,2 $[\mathrm{OM}]$, R=3 $[\mathrm{OM}]$, L=75 $[\mathrm{M}\Gamma\mathrm{H}]$. Ключ замыкают. Через некоторое время сила тока в цепи практически перестаёт изменяться. Ключ размыкают.


Найдите заряд, протекший через сопротивление R после размыкания ключа. Ответ приведите в $[{\rm MK}{\rm J}]$ с округлением до целых. Сопротивление диода в прямом направлении много меньше R, в обратном – бесконечно велико.

Задача 10 #39 ID 5140

В электрическую цепь, схема которой представлена на рисунке, подключен нелинейный элемент НЭ, вольтамперная характеристика которого имеет вид $U=\alpha I^2$, где $\alpha=1,2$ $[{\rm B/A}^2]$, ЭДС источника и его внутреннее сопротивление равны соответственно 36 $[{\rm B}]$ и 1,4 $[{\rm Om}]$, R=4 $[{\rm Om}]$, L=100 $[{\rm m}\Gamma{\rm H}]$. Ключ замыкают. Через некоторое время сила тока в цепи практически перестаёт изменяться. Ключ размыкают.


Найдите заряд, протекший через сопротивление R после размыкания ключа. Ответ приведите в $[{\rm MK}{\rm \Lambda}]$ с округлением до целых. Сопротивление диода в прямом направлении много меньше R, в обратном – бесконечно велико.

Задача 10 #40 10 5141

В электрическую цепь, схема которой представлена на рисунке, подключен нелинейный элемент НЭ, вольтамперная характеристика которого имеет вид $U=\alpha I^2$, где $\alpha=1,3$ $[{\rm B/A}^2]$, ЭДС источника и его внутреннее сопротивление равны соответственно 48 $[{\rm B}]$ и 1,8 $[{\rm OM}]$, R=5 $[{\rm OM}]$, L=125 $[{\rm M}\Gamma{\rm H}]$. Ключ замыкают. Через некоторое время сила тока в цепи практически перестаёт изменяться. Ключ размыкают.

Найдите заряд, протекший через сопротивление R после размыкания ключа. Ответ приведите в $[{\rm MK}{\rm \Lambda}]$ с округлением до целых. Сопротивление диода в прямом направлении много меньше R, в обратном – бесконечно велико.

